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ABSTRACT

The improved understanding of gas-stream turbulent mixing is contingent upon
obtaining a more comprehensive description of the resultant flow field and a
more precise evaluation of the turbulent transport properties. Under Contract
NAS7-521 a facility for study of this phenomenon was constructed and checked
out, Characterization and diagnostic experiments together with some data
analysis were accomplished under the present contract, NAS8-24568, and are

described herein.

The flow field experimentally studied was the two-dimensional mixing of fuel-
rich supersonic hydrogen-oxygen combustion products and a subsonic heated air-
stream. The mixing was accomplished in a chamber accessible to both optical-
and probe-type instrumentation systems, A total of 36 tests have been conducted
which included studies of (1) film coolant interaction, (2) the two-
dimensionality of the flow, (3) air temperature effects, (4) velocity ratio
effects, (5) airstream turbulence effects, and (6) configuration effects. The
data gathered consisted of (1) test section static pressure, (2) mixing layer
temperature, (3) partial pressure of H,0, (4) photographic information (UV, IR,

color, and Schlieren), and (5) facility operation.
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INTRODUCTION

Technological developments are required for advanced vehicle propulsion systems.
One of the required technology development efforts, which is the subject of this
study, is the improved understanding of high-speed gas mixing. Both fundamental
and applied knowledge of turbulent mixing are required by engine designers to
optimize the design of camposite propulsion systems such as ramjets, scramjets,
and air-augmented rockets, In addition, this information is applicable to the
study of rocket engine exhaust plume afterburning. Here it can be utilized in
such diverse fields as missile base heating and radio-frequency communication

interference.

An extensive body of phenomenological theory on turbulent mixing exists.
However, the proof of the validity of these theories, which are usually formu-
lated in terms of an eddy transport ccefficient or eddy viscosity, is greatly
impeded by the limited knowledge of turbulent transport properties. This is
particularly true in the case of mixing involving chemical reactions, as in
flames. Therefore, the goal of this investigation is to experimentally deter-
mine in detail the developing free shear layer in a particular turbulent mixing
process with combustion. The data thus obtained will be used to generate a
comprehensive description of the flow field and to determine the turbulent

transport properties of the mixing process.

In the past, probe-type instrumentation systems have been the primary source of
data collection. These systems have the common disadvantage of disrupting the

flow field in the vicinity of the measurement station which in turn intreduces




an inherent uncertainity into these data, This fundamental problem
is overcome through utilization of optical instrumentation devices which can
gather the same data, except velocity, without disturbing the flow field. These

devices have been successfully used at Rocketdyne for a number of years,

The principal optical instruments (spectroradiometer and photographic pyrometer)
utilized on this program were designed and constructed by Rocketdyne to conduct
spectroscopic studies of rocket plume radiation. Measurements are taken through
appropriate internal optics from a line of sight through the region of interest.
When the region is enclosed by non-transparent hardware, windows must be
utilized, Window materials are selected that ensure transmission of the
particular specie radiation. Quartz is most commonly utilized because of its
excellent mechanical and optical properties and is transparent to radiation

fram 2000 angstrons to 3 microns. Other more costly materials are required for

transmission beyond this range.

The spectroradiometer is a versatile instrument, capable of both spatial and
spectral scanning for quantitative emission and absorption measurements from
the ultraviolet to the infrared spectral regions. It consists of a grating
monochromator, detectors, entrance optics, radiation calibration sources, a
turning fork radiation chopper capable of rapid startup or stop, and a zone
ranging device, which enables the instrument to spatially scan across the
exhaust plume. It can be used in a conventional manner to obtain spectral

radiance and spectral absorption coefficients of a body of gas as a function



of wavelength, Also, it can be used at a fixed wavelength tc obtain spectral
radiance, absorption coefficients, temperatures, and partial pressures of

species as a function of spatial position.

The ultraviolet photographic pyrometer produces a photographic record of the
spatial distribution of the apparent spectral radiance of the mixing region, or
its equivalent brightness temperature, at low spectral resolution. Included in
its field of view are both the hot gases to be measured and a radiation standard,
The radiation standard consists of a calibrated tungsten filament lamp and a set
of neutral density filters. The optical components of the pyrometer all trans-

mit or reflect ultraviolet light.

These Rocketdyne-developed optical instruments were applied to the study of a
2-dimensional mixing layer between supersonic LOX/GH2 combustion products and a
subsonic heated airstream®, Under an earlier contract (NAS7-521), "Performance

Analysis of Composite Propulsion Systems," the following was accomplished:

1. Hardware Design - Design of a suitable hydrogen-oxygen combustor, test sec-

tion, and associated subsystems that ensure uniform parallel two-dimensional

flow,

2. Test Hardware Fabrication. Construction of major components required for

the experiments.

#This propellant combination is optically clean, i.e., it does not contain solid
particles. Although flows containing solid particles can be handled by approp-
riate techniques, the complexities introduced do not warrant the study of
propellant systems containing solid particles at this time,




3. Test Stand Buildup - Construction of a heated air supply, assembly of a con-

trol console, mounting of the test hardware, and mating of required supply

lines (propellant, coolant, etc.) to the experimental configuration.

L. Facility Checkout - Preparation of the experiment operating manual and

facility activation (cold flow and full-scale hot flow checkout tests),

5. Instrumentation Installation - Installation of the spectroradiometer, LASS

(Large Aperture Spectrometer/Spectrograph), photographic pyrometer, test-

section static pressure taps, and manometer bank,

6. Probe Instrumentation - The evaluaticn and procurement of special probe-type

instrumentation devices for the determination of velocity and total pressure.

A detailed description of the accomplishment of these tasks is given in Refs. 1
and 2. For continuity, selected sections will be abstracted for inclusion in

this report.

The present program was initiated on 17 June 1969 and the following which is

described in this report was accamplished,

1. Traversing Mechanism Design and Fabrication - Design and construction of a

traversing mechanism for probe-type instrumentation required to complete

data collection requirements,

2, Testing - Conduction of 36 hot fire tests for the determination of:
(a) the two-dimensionality of the flow

(b) the effect of test-section film coolant on the mixing process



(¢) a description of the basic configuration
(d) the effect of changes in air temperature
(e) the effect of changes in the air turbulence level

(f) the influence of velocity ratio.

3. Data Analysis - Test data reduction and presentation of the data into a

usable form for subsequent calculation of the turbulent transport properties.

Utilization was made of the flow system fabricated and checked out under the
previous contract. The above mentioned optical instrumentation systems and a

50-tube manometer bank were utilized for the determination of:

l. mixing layer temperature
2, mixing layer HZO partial pressure

3. test section static pressure
The determination of the presence of any instabilities, background photographic
data, and monitoring of facility operation were accomplished using "state-of-

the-art" devices,

A detailed description of these results together with some background information

is included in this report.

5/6




SUMMARY

This report discusses accomplishments made under NAS8-2L568, "Performance Analysis
of Propulsion Systems," which 1s a logical extension to the NAST-521 contract,

"Performance Analysis of Composite Propulsion Systems," described in Ref. 1 and 2.
Figures 1 through 3 show the assembled test section, flow facility, zone radiometer,

and schlieren spparatus.

A total of 36 full-scale tests were conducted with the apparatus and included
studies of:

1. film coolant interaction

2. the two-dimensionality of the flow

3. alr temperature effects

L, wvelocity ratio effects

5. alrstream turbulence effects

6. configuration effects.

The date gathered consisted of:
l. test section static pressure
2. mixing layer temperature
3. partial pressure of HpO
4. photographic information (UV, IR, color, and schlieren data)

5. facility operation.

These results represent the very first collection of mixing data utilizing non-

interference techniques.Specialized use of optical insitruments fulfilled the data
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requirements without resorting to probe-type devices,

Date analysis was confined to explanation of trends displayed in the data and
the production of cross plots yielding temperature and specie concentration maps.
The ultimate reduction of the data to turbulent transport properties was not a
contractual requirement. A detailed description of the present effort is given

in ensuing sections of this report.

Under the previous contract a flow facility and test hardware were designed,
fabricated, and checked out; optical instrumentation systems were installed and
adapted fof use; special instrumentation devices and their components were speci-
fied and procured; and faclility data reduction procedures were established and

computerized.

The test hardwere, as fabricated, consisted of an existing water-cooled two-
dimensional combustor (injector and body) with a specially designed water-cooled,
ideally contoured nozzle. The injector consisted of 32 ligquid-on-gas (impinging)
triplet elements. The injector-to-throat distance was 11 inches. Based on
previous firings with this injector, it was estimated that a c¥* efficiency of

97 percent would be obtained. The combustor attaches to the upper half of a
fully instrumented windowed test section. The lower half of the test section
accommodates a subsonic stream of hot air that flows beside and mixes with the
combustion products in the test section. The air nozzle is located at the exit
plane of the combustor nozzle. Film-cooled windows permit observation of the
mixing region. Analytical results supplied by the contract technical manager

and those calculated from Rocketdyne computer programs were utilized in the test

11




section and combustor nozzle design.

The major test stand subsystems included: (1) coolant water lines and supply,
(2) liquid oxygen lines and supply, (3) hypergcl (TEAB) lines and supply,

(L) gaseous hydrogen lines, (5) film coolant lines, (6) air lines and supply,

and (7) an air heater. With the exception of a heated air supply and an adequate
supply of coolant water, all subsystems were readily available to the test pad.

A low-pressure water tank (200 gallons, 1500 psi) and an air blower were pro-
cured and installed; a specially designed steady-state air heater was designed
and fabricated, The heater was attached to the air blower, which served as the
air supply. A full-scale combustor, exhaust nozzle, and test section mock-up
was installed in the thrust mount and all propellants, pressurants, and coolants

were plumbed from their supply outlets to the test apparatus.

After the CEN/TS and the flow facility were fully checked out, the optical
instrumentation systems were modified for use on this program and installed in
the test pit, The spectroradiometer (zone radiometer) was mounted behind a
blast wall in the test pit and the other optical instruments were located at a

more remote site,



EXPERIMENTAL APPARATUS AND FLOW FACILITY

EXPERIMENTAL APPARATUS

The design of the experimental apparatus was predicated on the basis that the
primary source of data collection would be through optical means. Therefore,
great care was taken in the design phase to ensure that relisble optical data
could be obtained. The combustor propellant flowrates of 6.5 lb/sec at a mixture
ratio of 5 were conservatively based upon calculations performed to determine the
required specie concentration for a fixed optical path with a reasonable flow
height. This propellant flowrate was nearly identical to that deliverable by an
existing Rocketdyne two-dimensional LOX-GH, test motor; therefore, this motor was
utilized as the combustor. The combustor consisted of an impinging triplet
injector (32 liquid on gas impinging elements) with a water-cooled body having a

flow passage 3.54 inches wide by 2.03 inches high.

With the combustor design established, the design problem was reduced to the
determination of a combustor exhaust nozzle, air nozzle, and mixing chamber that
would ensure two-dimensional parallel flow and permit adequate observation by the
optical instrumentation. The best design consisted of an integral arrangement of
these three items and was designated combustor exhaust nozzle/test section (CEN/TS).
Firing durations of 10 seconds, which were required for adequate optical data
acquisition, necessitated the use of film coolant to maintain the CEN/TS hardware.
The integral design made insertion of film coolant into the mixing chamber a
relatively simple matter. Care was taken to minimize mixing between the film cool-

ant and the propellant streams of interest.
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The requirement of a two-dimensional flow system dictated that the two-dimensional
combustor exhaust nozzle must produce uniform parallel flow with no cross flow.
This was accomplished with the ald of a computer-calculated ideally contoured
nozzle. The exhaust nozzle fulfilling these requirements was generated from
calculations made with the Rocketdyne two-dimensional bell nozzle program. These
calculations were compared to similar calculations provided by the contract tech-
nical manager and excellent agreement for contour curvature was obtained. The
design detail of the combustor exhaust nozzle prior to final machining is shown

in Fig. 4%, The design for mixture ratioc 5 is the -3 configuration. Final mech-
ining operafions reduce the nozzle tip thickness at the exit to 0.060 inch but did
not change the inside contour of the nozzle. The "knife-edge" 1ip permitited smooth

transition to the parallel stream mixing region.

The air flowrate was selected such that the air flow area was approximately equal
to the exhaust area of the combustor nozzle. An air flowrate of approximately

2 1b/sec satisfied this condition. The design detail of one side of the air nozzle
is shown in Fig. 5. The gradual convergence to a relatively long, flat configura-
tion at the nozzle exit induces the air to flow two-dimensionally and parallel.

The nozzle width at convergence is 3.54 inches which is identical to the width of
the combustor exhaust nozzle. The air nozzle is attached to the side wall of the

CEN/TS.

*¥It should be noted that fabrication limitations imposed by the cooling passages
required that the nozzle expansion section be shortened by 25 percent. This
length reduction was initiated at the midpoint of the expansion.
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The CEN/TS design layout is illustrated in Fig. 6 and an isometric illustration

of it is presented in Fig. 7. The CEN/TS mates to the combustor and incorporates
an air nozzle located on the bottom side at the exit plane of the LOX/GH2 combustor
nozzle, GN2 film coolant 1s injected at the top of the exhaust product stream to
prevent erosion of the test section top plate. Film coolant is also inserted
along the sides of the combustor and air stream to protect thg side walls from the
hot combustion products., The side wall film coolant is inJjected parallel to the
main streams and at velocities that minimize mixing between these streams. The
film coolant on the ailr side was injected at approximately the same pressure and
velocity as the air stream. Mixing between the combustor exhaust products and

its film coolant stream was minimized by injecting the coolant at the test section
pressure but at sonic velocity. Due primarily to cost considerations, the mixing
chamber length was limited to approximately 9 inches which is also the stability
limit (Ref. 3) of the film coolant streams. A summary of nominal parameters and

dimensions for the combustor and CEN/TS is presented in Table I.

The location of the viewing ports was based upon results from a computer program
(Ref. L4) describing gas-phase mixing with combustion for the design configuration.
The mixing layer temperature contours for a LOX/GHQ combustion products stream at
a mixture ratio of 5 mixing with a parallel subsonic air stream of 1000 K is
illustrated in Fig. 8. The locations of the air and combustion products streams
are reversed in the actual physical configuration. The mixing chamber dimensions
and the location of the view ports are overlaid on the temperature map illustrat-
ing the relationship of the mixing chamber to the analytically predicted mixing
zone. The viewing ports allow observation of 25 percent of the combustor exhaust

stream and 75 percent of the air stream. This enables viewing of the entire

17
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TABLE 1

SUMMARY OF COMBUSTOHR AND CEN/TS NOMINAL
PARAMETERS AND DIMENS IONS*

Combustor
Chamber Pressure = 402 psia
Flowrate at Mixture Ratio 5 = 6.5 lb/sec
Injector-to-Throat Length = 11 inches
Height = 2.03 inches
Width = 3.54 inches
Exhaust Nozzle
Expansion Ratio = 4.923
Throat Area = 3.86 sq in.
Throat Height = 1,090 inches
Exit Mach No. = 2.70
Exit Pressure = 13.7 psia
Air Nozzle
Height = 5.88 inches
Throat Width = 3.54 inches
Throat Mach No. = 0.25

Throat Pressure = 13.7 psia

Mixing Chamber

Height = 11.982 inches
Width = 4 46 inches
Chamber Pressure = 13.7 psia

Film Coolant (Combustor Side Wall)

Slot Width = 0.4 inch
Inlet Mach No. = 1.0

(Combustor Top Wall)

Slot Width = 3.54 inches
Slot Height 0.616 inch
Inlet Mach No. = 1.0

(Air Side Wall)

Slot Width = 0.4 inch
Inlet Velocity = Air stream velocity

I}

i

*Interface distance between all gas streams is 0.060 inch.
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calculated mixing region for an axial distance of Q inches.

FLOW FACILITY

A specially designed flow facility was constructed at the Combustion and Heat
Transfer Laboratory of the Rocketdyne Santa Susana Field Laboratory. The

entire facility prior to instrumentation instellation is illustrated in Fig. 9.
It consists of a number of subsystems. These include: (1) LOX system, (2) GH,
system, (3) hypergol triethylaluminum/triethylboron (TEAB) system, (4) H,0
system, (5) GN, system, and (6) the hot-air system. The control console for the

various subsystems is illustrated schematically in Fig. 10.

The allowable engine thrust level for the thrust mount (rear view is shown in

Fig. 11) is 7500 pounds which exceeds the meximum deliverable thrust by a factor
of 3. The thrust mount provided for ease of engine installation and allowed
removal of the injector without disassembly of the entire apparatus. The observed
open area in Fig. 9, 10 feet deep on one side and 4O feet deep on the near side of
the CEN/TS thrust mount, was reserved for the principle optical instrumentation,
i.e., spectroradiometer, TASS (large aperture spectrometer/spectrograph), and

photographic pyrometer.

LOX System

The LOX system is illustrated in Figs. 12 through 1lh4. It consisted of a 43-
gallon, 5000-psi, stainless-steel tank which was capable of supplying LOX at the
test conditions for approximately six times the maximum run duration, i.e., 60

seconds. The tank was filled by attachment of a 300-gallon LOX trailer to the
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truck fill tap. Gaseous nitrogen, eppropristely regulated, was used for tank
pressurization and the purge. The T00-psi tank pressure for the experimental
firings was well below the coded value for the vessel. The discharge line size

was 1 inch.

Gaseous Hydrogen System

The GH2 system is illustrated in Figs. 14 and 15. A 600-cu.ft., 3000-psi bottle
bank connected to the Santa Susana GHé network comprised the laboratory supply
which was more than sufficient. A regulsted l-inch diameter run line connected
to the 1-1/2-inch bottle bénk outlet was located approximately 50 feet from the
pad. The hydrogen pressure delivered at the supply outlet was approximately 2600
psi. Therefore, since the combustor operating pressure was nominally 402 psia,
pressure drop through the relatively small run line was not a problem. Gaseous
nitrogen fed from the regulator output of the hypergol purge served as the fuel

purgee.

Hypergol System

The TEAB hypergol system is illustrated in Figs. 16 and 17. It consisted of a
2=-quart, 5000-psi, stainless-steel tank which was cepable of supplying sufficient

hypergol for aspproximately 30 tests.

The regulsated GN2 supply used for tank pressurizstion also served for the hypergol,
H,0, and GHp purges. The 300-psi working pressure of the hypergol system was

well below the pressure rating of the tank. The discharge line size was l/h inch.
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TEAB was selected over ClF3 or F2 as the ignition sgent because 1t is less

corrosive and easier to handle. In addition, tenking was done on-site rather

than at a special area.

Water System

The water system (Fig. 18) consisted of two steel tanks (200 gallon, 1500 psi;
and 600 gallon, 1500 psi) capable of supplying coolant water for approximately
150 seconds, i.e., fifteen times the maximum test duration. This large supply

of water permitted relatively long pre- and post-test cooling of the hardvare.

The tanks were filled from a soft water supply which was filtered before entering
the tanks. A schematic of the entire system is presented in Fig. 19 and attach~
ment of the coolant water to the combustor and the CEN/TS is illustrated in Fig.
20. Gaseous nitrogen fed from the regulator output of the hypergol purge served
as the water purge. A separate, regulated, GN2 supply was used for tank pressuri-
zetion. The run pressure of 1100 psi for both water tanks was well below the

coded values for the vessels, Both discharge lines were 1-1/2 inch.

Gaseous Nitrogen System

The distribution of the gaseous nitrogen (GNE) system is illustrated schemstically
in Fig. 21. The low-pressure film coolant regulator is shown in Fig. 1l. The
other regulator (not shown) was located on the top of the thrust mount. The
attachment of the film coolant ducting can be seen in Figs. 16 and 20. Also

shown on Fig. 16 is the 120-psi pneumatic system for the operation of all control

valves. The remaining GN2 plumbing for purges and pressurization 1s displayed

33




wosAg omm ‘g1 2an3tg

I098TNFsy “p

34



SOFT Ha0
SUPPLY

200 GAL
Steel

1500 PSI

.

600 Gal
Steel

@ 1500 PSI

— 9

H20 SYSTEM

ITEMS:
i—i8 PRESSURIZATION SYSTEM
21-28 FILL SYSTEM

29-30 DISCHARGE SYSTEM
31-32 PURGE SYSTEM

TO COMBUSTOR

GN, FROM HYPERGOL

\4

TO COMBUSTOR

PURGE REG. OUT

CHECK VALVE
. DOME REGULATOR
. DOME VENT

. MOTORIZED LOADER
SHUT -OFF

+ VENT

. MOTORIZED LOADER
. DOME VENT

. DOME REGULATOR
10. CHECK VALVE

1. BURST DIAPHRAGHM
12. TRANSDUCER

13. RELIEF VALVE

14, VENT

15 VENT

16, RELIEF VALVE

© @ N AP s WoN -

30.
31

32

35

TRANSDUCER
BURST DIAPHRAGM
TANK

TANK

. SHUT - OFF

. FILTER

. PRESSURE GAGE
. CHECK VALVE

FILL

RELIEF VALVE

FILL

CHECK VALVE

MAIN

MAIN

PURGE CHECK VALVE
PURGE VALVE

Figure 19. H,0 Systeﬁz Schematic




SI
/NED 9U3 03 Cjp P
ue

; m,.u.mw
LT -
- ETO0D rﬂ MMH
H s
P N

4
0
H Jo juemjoelly

‘02 eandtg

36



b'{

-§» TO ALL CONTROL VALVES

‘ L B TO HYPERGOL PRESSURIZATION SYSTEM AND

HYPERGOL,GN 2, AND H20 PURGES
—4p TO LOX PRESSURIZATION AND PURGE SYSTEM

1

£
P :
£

£

TO HIGH PRESSURE
FILM COOLANT

plar
%—Dé

TO LOW PRESSURE

TO HpO SYSTEM FILM COOLANT
é GN SYSTEM
GNo SUPPLY ITEMS:

2 — 10 FILM COOLANT PRESSURIZATION SYSTEM
14 — 19 PNEUMATIC SUPPLY PRESSURIZATION SYSTEM

l. SHUT-OFF Il. PRESSURE GAGE
2. SHUT-OFF 2. SHUT-OFF

‘3. HAND LOADER 13, CHECK VALVE

4. PRESSURE GAGE 14,  SHUT OFF

5. DOME VENT 15. HAND LOADER

6. DOME REGULATOR 6. DOME REGULATOR
7. DOME REGULATOR 17. PRESSURE GAGE
8. DOME VENT 18. VENT

$. PRESSURE GAGE t9. RELIEF VALVE

0. HAND LOADER

Figure 2l. GN_ System Schematic

37




with each particular subsystem. The 2350-psi GN, bottle bank laboratory supply
was connected to the Santa Susana 3000-psi GN, network. This created essen-

tially an unlimited nitrogen supply.

Hot Air System

The entire steady-state hot air system (blower, heater, and heater power supply)
is shown in Fig. 9. The method of attainment of the air ducting to the CEN/TS

is illustrated in Fig. 16, The air blower, shown in Fig. 22, produced a l-psi
head and an air flowrate of 2 1lb/sec. Flowrate control was achieved by restric-
ting the blower inlet. The 8-inch-square outlet was close-coupled to the air
heater. Diffusion screens at the heater inlet aided in expanding the flow to the
16-1nch external diameter of the packed tube bundle heater, The electrical power
supply and the 28-volt dc control wiring for the air blower are shown schematic-

ally in Fig. 23.

The air heater, shown during assembly in Fig. 24 consisted of a 6,75-foot, 1l6-inch
by 0.375-inch wall, electrically heated, stainless-steel shell. This shell was
packed with approximately 1200 pounds of O,5-inch by 0,065-inch wall stainless-
steel tubing, The shells were closed by welded ASME flanges. The packed tube
bundle was held in place fore and aft by diffusion screens tack welded to the
chamber body (Fig. 25). Both heater inlet and outlet were 8 inches in diameter,
Prior to final assembly, a flow diverter was placed in the heater inlet to prevent
channeling of the flow. Twelve rod type heaters requiring 24 kilovolt-amperes
were imbedded in the tube bundle matrix, These resistance elements heated the

entire assembly by conduction. The outer case was insulated to a Ah-inch radial
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Figure 23, Blower Power Schematic
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Figure 24, Air Heater During Assembly
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thickness with rock wool with an overwrap of aluminum foil, The heater capacity

was sufficient to warm & 2 lb/sec flow of air to 1000 F for 2 minutes.

The 25-kilovolt-ampere heater power supply and its 28-volt dc control wiring

are shown schematically in Fig. 26. The electrical power was supplied from a
L4O-volt ac three-phase, four-wire distribution system. Variable heating power
was obtained from a three~gang, three-phase motorized powerstat connected in a
Y configuration. The heaters were operated as balanced loads on three single-
phase circuits. A platinum/platinum 13-percent rhodium thermocouple (0.020-inch
diameter wires) was mounted on the externsl heater metal shell to serve as an
overall temperature protection device. This thermocouple and a Barber-Coleman
Capacitrol controlled the energizing circuit of the three-pole magnetic contact,
allowing remote and/or untended heater operation. The power supply was located

near the L4lL0-volt ac outlet on the test stand.
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IRSTRUMENTATION

& number of specialized instrumentation systems were utilized in this program,

A discussion of these devices is given in the following paragraphs,

ZONE RADIOMETER

The zone radiometer system, developed to study rocket exhaust radiative processes
under Contract NAS8-11261 (Ref. 5), was used to determine the temperature and
partial pressure profiles of the H,0 molecule from measurements of the spectral

emissivity and spectral radiance for various lines of sight.

The zone radiometer spectroscopy system is shown schematically in Fig., 27. The
greybody source and spectroradiometer are described in complete detail in Ref. 5,
and will therefore be discussed only briefly here. Special care was taken in
the installation of this instrument to minimize the transmission of engine vibra-

tion to the optical camponents.

The greybody source consisted of a 6-inch long, 3/8-inch diameter, electrically
heated graphite rod mounted in a water-cooled, argon-purged housing. Greybody
radiation was optically chopped with a cylindrical "squirrel-cage" chopper to
produce an AC signal for absorption measurements. The housing was equipped

with a shutter.

With reference to Fig. 27, flat mirror M; and an 8-inch diameter spherical mirror

M, form a 1:1 image of the greybody source across a vertical plane perpendicular
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to the flow axis in the mixing region. The greybody housing was actually mounted
above the horizontal optical plane of the system so that it would not cbscure a
view of the mixing region from other instrumentation. The greybody source

optics and flat mirror M3 were moved parallel to the flow axis to change the
horizontal field of view of the system, Flat mirrors Mh and M5 relayed radia-

tion from the part of the mixing region under study to the spectroradiometer.

An optical diagram of the spectroradiometer is shown in Fig. 28 and Fig. 29 is

a photograph of the instrument. The optical path, which was enclosed and purged
with dry nitrogen, to eliminate atmospheric water vapor in the line of sight,
was of such a length that a 10:1 reduced image of a portion of the mixing region
was formed at the manochromator entrance slit by the telescope objective mirror,
The field of view of the spectroradiometer at the mixing region was rectangular
in cross section (on the order of 3 x 3 millimeters) and perpendicular to the
flow axis, The width of this field of view was 10 times the width of the
entrance slit. The height of the field of view was determined by an adjustable
aperture at the entrance slit. During a test this cam driven aperture scanned
different zones of the mixing region in the vertical direction. The cross
sectional size of the field of view was determined from a trade-off between

desired spectral and spatial resolution and available energy.
For emission measurements, the greybody shutter was closed and radiation from

the mixing region was optically chopped at the manochromator exit slit. (This

chopper was not used during absorption measurements.)

L7




JaorsworpeIogtoadg a8yl Jo weIFBRT(Q TB8OT3dQ °Qg 8and1d

('S 1v SHN220
HOLVYWOHHOONOW JOVWI AQO8MIVIE
¥0 IANTd

4 N

WSINVHOINW 3AIHQ

40 NVOS 1vilvds )
HLON3T3AVM

HIONVY INCZ 2

(?s 1v Q31viom
H3ddOHD TYNMUILNI

WNHA H19NITIATM
401203130 S 94

NMOHS 1ON

H012313Q esad

IS 113
11M1S 3IONVHINTG

2g
g

3Sd1713 SIXv-440

é LSNPAY H1QIM LIS

ONILY YO
HOMYIN IONVHO
¥0123130 HONMIN NOLLYHEITVD
HOHY W
= ONINOVY L
HONYIW
3A1103r80
390983131 [\
AQ08YoV18
VHINYD |
ONILHOIS3HO08
aNvY
W19na14

ONIYHId 9NIHNG HOYYIW
NOILVHEITWD 40 NOILISOd

L8



J238wWoTpBI0I}0adg paIBIJuT

°6z 9INTTY

L9



The Perkin-Elmer Model 98-G monochromator was equipped with a 240-groves-per-
millimeter grating blazed at 3.75 microns and used in Jfirst order., Overlapping
orders were eliminated by a germanium filter. An uncooled PbS detector was
used. The AC output from the detector was amplified, synchronously rectified,

and displayed on a strip chart recorder,

An additional flat mirror relay system was assembled so that the spectroradiom-
eter could view the mixing region outside the combustor from above, rather than
horizontally. This system was used to assist in checking the two-dimensionality

of the flow field.

PHOTOGRAPHIC MEASUREMENTS

A number of photographic measurements were utilized to provide visual informa-
tion supplementary to the optical data collection. These measurements included
schlieren, ultra-violet, infrared, color, and photopyrometry photography. A

brief discussion of these techniques follows,

Schlieren Photography

Schlieren photography was used to determine the boundaries of the mixing region.
This technique provided a cross reference with the data gathered with the zone
radiometer and furnished a visual picture of the phenomena of interest, Simple,
efficient operation was achieved through the use of a specially-designed
schlieren lens attachment for a 1l6-millimeter Fastax camera and a portable

parabolic mirror. A& high intensity pulsed light source was provided by an

50



EG&G, Inc., Model 501 high-speed stroboscope. The test set-up is shown schem-
atically in Fig. 30, For these experiments the knife edge was oriented
horizontally to accentuate vertical density gradients. A detailed discussion

of the theory of operation of a schlieren system can be found in Refs., 5 and 7.

Motion Picture Photography

The photographic coverage incorporated an array of three cameras to record

radiation from the following spectral regions:

1. 2850 - 3150 A - corresponding to the (0,0) OH band, the region where OH

radiates most intensely;

2. infrared from 7000-8500A - corresponding to weak water emission bands which

have been recorded in previous work at Rocketdyne;

3, visible fram 3500-6300 A - includes some of the blue continuum and impuri-

ties which may be present,

The basis for selection of these particular spectral regions for photographic

coverage evolved from the experience gained under NAS7-521.

Table 2 presents the spectral regions recorded, the possible emitter species,
and types of lens, filters, and films utilized. The film records were evaluated
for their information content and only those that yielded specifically useful

information are discussed in Appendix 4.
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TABLE 2

PHOTOGRAPHIC SPECIFICATIONS

SpeotralM T o ) T )
Region Chief
(a) Emitter Lens Type Filter Film
2850-3150 - OH Quartz, Ultra- OCLI 2498 RAR
violet
transmitting
T000~-8500 H,0 Glass Wratten 89B IR
3500-6300 Hgo, Glass None Ektachrome
0 F OH EF Daylight
Recombination,
Impurities
- —
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The UV and IR cameras were located approximately 10 feet from the engine with a
direct line of sight perpendicular to the windows, Initially, Fastax cameras
capable of framing rates up to 8000 frames per second were utilized; however,
emission was too weak to be recorded at these high framing rates, Subsequently,
Bell and Howell cameras were employed, Motion picture coverage determined the
spatial distribution of emission from the principal emitting species and pro-

vided a visual analog to the spectroscopic data.

Photopyrometry

The photopyrometer consisted of a Nikon F 35 mm camera equipped with an automatic
rewind motor, an ultraviolet transmitting lens, optical interference filters to
isolate a narrow band of radiation in the desired spectral region, a tungsten
ribbon filament lamp, and an optical calibration system consisting of mirrors

and an attenuating step filter. These components are shown schematically in

Fig. 31.

The ultraviolet photopyrometer records the radiation from the OH radical photo-
graphically for the determination of a contour map of the OH brigntness tempera-
ture. The map assists in defining the spatial extent of combustion. A tungsten
lamp ribbon filament of known spectral radiance which is also imaged on the film
record serves as the calibration source. The ribbon filament was attenuated by a
step filter of known attenuation and thus provided a calibration scale for data
reduction. The flow field was mapped through utilization of an automatic-
scanning microdensitometer which produced an iscdensity contour map of the gas

flow image and a densibty measurement of sach zone of the step filtered lamp
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image. The film response was determined by plotting the film density of each
zone as a function of the logarithm of radiance. A& value of radiance or its
equivalent brightness temperature can then be assigned to each isodensity

contour in the flow field,

The OH brightness temperature at a given point in the flow field is a function
of both OH concentration and the electronic excitation temperature, which may

be equal to or greater than the gas translational temperature. Complete inter-
pretation of the photopyrograms requires correlation with ultraviolet spectro-

scopic data,

OTHER INSTRUMENTATION

Manometer Bank

A 50-tube mancmeter bank for mapping the test-section static pressure was pro-
cured and installed adjacent to the test pit (Fig. 32). A total of 30 static
pressure taps were located on the four test-section walls. The manometer bank
was also used tc¢ monitor the pressure in the air heater transfer ducting. The
physical location of the static pressure taps is given in Table 3. Mancmeter

bank data is presented in Appendix 1.

Ancillary Instrumentation

4 series of difficulties precluded the collection of data from some of the

instruments planned for use on this program. These instruments included the
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Figure 32, 50-Tube Manometer Bank
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STATIC PRESSURE TAP LOCATIONS

TABLE 3

Pr;;;ure X,in Y, in 7, in
1 8. 625 11.982 2.23
2 5,585 11.982 2,23
3 5.585 11.306 4, 46
i 8. 625 9,306 L, 46
5 - .078 11.306 k46
6 5.585 11.982 1.3k
7 5. 585 11.982 3.12
8 5. 585 9: 306 4, 46
9 2.875 9. 306 L, 46

10 - .078 9, 306 b 46
11 8. 625 0 3.12
12 8. 625 0 1.34
13 5. 585 11.306 0
1k 2,875 9.306 0
15 - .078 11,306 0
16 8. 625 0 45
17 8. 625 9. 306 0
18 5,585 9. 306 0
19 - .078 9,306 0
20 2,875 11.982 2.23
21 5. 585 0 45
o2 2.875 0 o 45
23 5,585 0 4,01
24 - .078 0 4,01
25 - .078 0 3.12
26 - .078 0 L5
27 8. 625 0 4, 0L
28 2.875 0 L,o1
29 - .078 o} 1.34
30 - .078 0 2.23

Y

A 7

L X -
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LASS (larger aperture spectrometer/spectrograph), greyrad probe, and hot wire
anemometer. Concurrance with the technical monitor always preceded elimination

of these devices from the test program.
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DATA REDUCTION

ZONE RADIOMETRY

Measurements

Because of the two-dimensionality of the flow field, the data reduction
procedure was much simpler than described in Ref. 5. The data reduction

procedure for each line-of-sight (LOS) is that used for a uniform gas.

The two quantities , the spectral radiance (NLOS)’ and the emissivity
(E;LOS) are indirectly measured by the spectroradiometer. NLOS is deter-
mined from point~by-point comparison of spatial scans of flow field emission

to emission from a blackbody as corrected for mirror losses, i.e.,

_ 1.42 De
Los "D
Dgp (1)
when Df = flame emission
Dgp = blackbody emission

and 1.42 is the window loss correction factor.

Point by point comparison of spatial scans of greybody radiation as atten-
uated by the flow field during a test allowed preparation of graphs of

=1 -2 ) as a function

fractional transmission Q}LOS) or em1s51v1ty'(eLOS oS

of line of sight, i.e.,
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A = mﬁgé
(2)
where Dfmg = intensity of attenuated greybody radiation
Dg = intensity of greybody radiation
and
€=1-T.

Plots of these initial spectroradiometer measurements Ny 0g andéELOS are

given in Appendix 3.

From the fundamental measurements described above, line-of-sight (LOS)

temperature and HQO partial pressure can be derived.

The line-of-sight temperature is defined by the relation

NLOS - N (T )
€10s BB *"LOS (3)
where NBB (TLOS) is the spectral radiance of a blackbody at temperature

T and at the wave length at which the measurement was carried out. In

Los
this case the temperature was derived by reference to a standard blackbody
table for the wave length of 2.49 microns, the wave length utilized in

these experiments.
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H?O partial pressure (PLOS) is determined from the simple Lambert-Beer

Law expression

~ KL P g
e

“Los = (k)

where L is the path length of the flow field along the line-of-sight and
K is the value of the spectral absorption coefficient of HQO at the tempers-
ture and measurement wave length. The absorption coefficient was obtained
from Ref. 1l as a function of temperature. The wave length utilized for
measurement was 2.&9/&. As discussed in the following paragraphs the
simple expression above is not precisely correct, primarily due to pres-
sure broadening of the spectral lines. However, the error in applying
equation 4 can be acceptably small depending upon the wave length selected
for messurement (i.e., in the wings of the band K, x constant) and the
overall accuracy of the data. It was estimated that the maximum error in
applying equation 4 at a wave length of 2.h9rh was 15% in water vapor
partial pressure. Plots of these derived dats, T108 and PHEOLOS’ are

given in Appendix 3.

A discussion of the method utilized for the determination of H,0 partial

pressure ls presented in the following paragraphs.

Lambert-Beer's Law, Eq. ), can be easily derived assuming that the absorp-
tion of each molecule is independent of every other molecule. However,
since (1) monochromatic light is difficult to achieve, (2) the collision
of molecules cause variation in the absorption, and (3) all absorption

lines are of finlte width, deviations in the Lambert-Beer Law occur.
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In fact, many cases of deviations in the Lambert-Beer Law have been measured

and documented in the literature.

A more general form of the absorption law is:

0.
\ syexp(-K, pl) £(|v -v,|, a)dv
‘)
o}
T- ©
'S; s, f(1v-vyl,a)av
6 (5)
where Sv = energy distribution in the radiation of the
incident light
f(lv-vsla) = the spectrometer transmission function
2 2
Ky = %n S/TT [(v-vm) + 5 ], Lorentz collision
m
damping function
v = wave length frequency
o)
O(m = S Kvm d‘v
o
g = damping constant
a = slot width
m = center of band

Equation (5) has been solved for several specific conditions by Elsasser
and Plass. When applicable, application of one of'these models allows the
theoretical determination of the absorption for a given path length, and
partial pressure at selected frequencies; if the transmission and path

length are known from experimental measurements, then the corresponding

6l



partial pressure can be determined. The various solutions of equation (5)
all result in two dimenslonless parameters: one involving the total pres-
sure of the gases and the other the produc% of partial pressure of the
absorbing gas and the path length. An example of one set of solutions is
presented in Fig. 33 (taken from Ref. 9). Note that significant deviations
from the Lambert-Beer Law occur as the optical path becomes thick. Also
note that the total pressure of the gases produces a broadening effect on

the absorbing gas.

The non-Lambert-Beer lLaw behavior has been measured numerous times for
water vapor which is of interest in this program. Some typical results
are shown in Fig. 34 (taken from Ref. 10). Excellent agreement was found
with the results taken at )\ = 2.8h5{v~with the Statistical Model described
by Plass. Ferriso et al (Ref. 1l) empirically determined the absorption
coefficients of H20 from 300 to 3000°K. The assumption in their work is
that for optically thick gases the curve growth is also given by the
Statistical Model. They tabulated their results as a function of wave
length and temperature. For a wave length of 2.h9pﬂtheir results are

plotted in Fig. 35.

Comparison of these calculated results with the measurements made by several
other investigators showed good agreement. These results suggest that the
Statistical Model can be utilized to determine absorption characteristics
for water vapor in the presence of other gases. It is important to note
that the Statistical Model describes absorption characteristics which

deviated from standard Lambert-Beer Law behavior.
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Many investigstors have overcome the difficulty of integrating the absorption
equation by simply developing "working calibration curves". This is accom-
plished by measuring the absorptance as a function of both known partial
pressures and path length. The working curve is then used directly to
determine the unknown partial pressure of the gas mixture, however, due to
the high combustion temperatures encountered on this program this could not

be readily accomplished. Therefore, Fig. 35 was utilized for data reduction.

Instrument Calibration

Wave length calibration of the spectroradiometer was conducted by recording
atmospheric absorption spectra. Intensity calibration for emission data was
made with a blackbody radiation source. Corrections were applied to include

the losses caused by the various mirrors and windows in the optical path.

The background spectra for absorption measurements was obtained by scanning
the greybody prior to a test. Spatial calibration of the spectrometer field
of view was obtained by using the travelling aperture to scan the images
of small light sources placed at known positions with respect to the test

chamber.

Mode of Operation

The spectroradiometer initially was used in a conventional spectral scan
mode with a fixed line-of-sight through the mixing region. This furnished
data for the selection of the optimum wave length, slit width, and elec-

tronic amplification values for the zone radiometry measurements.
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On all subsequent test firings, zone radiometry was conducted for emission
and absorption measurements at a selected wave length (2@M9rh) across &
single plane (perpendicular to the flow axis) of the test chamber. Differ-
ent planes were measured on different tests. During the first half of &
test the travelling aperture scanned the mixing region image for emission
measurements and radiation intensity was recorded as a function of spatial
position. During the second half of the test the internal chopper was
turned off, and the greybody shutter was opened. Chopped greybody radis-
tion attenuated by combustioh products was recorded as a function of spatial
position. Before and after a test the blackbody and the greybody weré

similarly scanned for calibration purposes.

PRESSURE AND TEMPERATURE INSTRUMENTATION

The large quantity of pressure and temperature instrumentation utilized to
monitor the operation of the facility necessitated computerized data reduc-
tion. Appropriate data reduction equations were assembled and a computa-
tional sequence was formulated. These procedures and the computer programs

are presented in Appendix 7.

PHOTOGRAPHIC MEASUREMENTS

The large volume of photographic information gathered necessitated a two-
step data reduction process. The films were initially screened to eliminate
obviously poor films (poor field of view or redundancy). Then a compulation
of film records that were representative of the experiments was assembled
and enlargements that depicted the availsble information were made. The

spatial location of the momentum boundary layer (displayed in the schlieren
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prints) and chemical reaction zones (displayed on the UV and TR prints) were
recorded and analyzed for gross data trends. Analysis of these data is given

in Appendix 4.

A similar procedure was applied to the photopyrograms; however, due to the
relatively high cost of reducing these data to isodensity maps and ultimately
to relative brightness temperature maps, greater care was given to the selec-
tion of the frames to be reduced. The analysis of the available data (dis-
cussed in detail in Appendix 4) indicated that no significant changes occurred
in the plume as a function of the test variables; therefore, only those frames
that typified the high air temperature and medium air temperature tests were

reduced . The data reduction procedure was as discussed previously.
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RESULTS AND DISCUSSION

The large quantity of experimental data obtained would usually be presented
in this section, however, due to its bulk and to provide a less congested

flow of information, data from this program are included in the Appendices.
Appropriate discussion, when applicable, is also presented. The Appendices

include:

Appendix 1 - Manometer Bank Data (Test section static pressure)
Appendix 2 - Translent Data

Appendix 3 -~ Zone Radiometer Data

Appendix 4 - Photographic Data

Appendix 5 - Velocity Profiles

Appendix 6 - Test Firing Data

Appendix 7 - Data Reduction Computer Programs

A brief discussion of the hot fire tests is given below, after which 8
discussion of the data is presented. Data analysis, in its usual inter-
pretation, was not a part of this program. Correlation of these test data
with theory and reductién to turbulent transport properties was beyond the

scope of the present effort.

HOT FIRE TESTS

A total of 36 hot fire tests were conducted on this program. The test
matrix and associated principal Instrumentation locations are gilven in
Tabhle 4. TFor comparison purposes the data were grouped according to the

followling:
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Test No,.

1

021

O41

10

11

12

13

14

16

17

Date

11/19/69

11/19/69

11/26-69

1/13/70

1/13/70

1/13/70

5/26/70

5/26/70

5/26/70

5/28/70

5/28/70

6/9/70

6/9/70

TABLE 4

TEST MATRIX

f

Type

Instrumentation Checkout
(Ta = 1000°F)

Instrumentation Checkout
(Ta = 1000°F)

Instrumentation Checkout
(Ta = 1000°F)

Flow Characterization
(Ta = 1000°F)

Instrumentation Checkout
Ta = 1000°F)

Flow Characterization
and 2D Determination
(Ta = 1000°F)

Film Coolant and 2D Deter-
mination (Ta = 1000°F)

Flow Characterization
(Ta = 1000°F)

Flow Characterization
(Ta = 1000°F)

Flow Characterization
(Ta = 1000°F)

Flow Characterization
(Ta = 1000°F)

Film Coolant and 2D Deter-
mination (Ta = 1000°F)

Flow Characterization
(Ta = 1000°F)
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Instrumentation &
Location

ZR-H-8-SPECT - E
LASS-2-SPECT- E, PYRO
SCH~H-2
ZR-H~8-SPECT~ E
LASS-2-SPECT~ E, PYRO
SCH-H-2

ZR-H-1-SPAT-E, PYRO
SCH-V-10, LASS-5-SPECT-E

ZR~-H-8-SPAT- EA, PYRO
LASS-Vibration Test

ZR-H-1-SPECT~E, FYRO
14SS - Internal Scan

ZR-H-1-SPECT-EA
LASS-SPECT, PYRO
SCH-V-10

ZR-H-8-SPAT-EA, SCH-V-10
ZR~H-3-SPAT~EA, SCH-V-10
ZR-H-6-SPAT-EA
ZR-H-4~SPAT-EA, SCH-H-10
ZR-H-5-SPAT-EA, HW-6-M-B

ZR-V-10-SPAT-E

ZR-H-1-SPAT-EA, HW-9-M-B



Test
Nos Date

18 6/9/70

19 6/10/70
20 6/10/70
21 6/10/70
22 6/24/70
23 6/24/70
2k 6/24/70
25 6/24/70
26 6/25/70
27 6/25/70
28 6/25/70
29 6/25/70
30 6/25/70
31 6/25/70
32 6/26/70

TABLE 4 {Cont'd)

Type

Flow Characterization
(Ta = 1000°F)

Flow Characterization
(Ta = TOO°F)

Flow Characterization
(Ta = TOO°F)

Flow Characterization
(Ta = T700°F)

Flow Characterization
(Ta = 700°F)

Flow Characterization
(Ta = TOO°F)

Flow Characterization
(Ta = TOO°F)

Flow Characterization
(Ta = T00°F)

Flow Characterization
(Ta = TOO°F)

Flow Characterization
(Ta = 7O00°F)

Flow Characterization
(Ta = TOO°F)

Instrumentation &
ILocation

ZR-H-2-SPAT-EA

ZR-H-10-SPAT-EA, SCH-H-5,PYRO

ZR-H-2-SPAT-EA

ZR~H-3-3PAT-EA

ZR-H-8-1/2-SPAT-EA, SCH-H-2

ZR-H~5-8PAT-EA

ZR-H-6-SPAT-EA, PYRO

ZR-H-T~SPAT-EA

ZR-H-1~-SPAT-EA, SCH-H-10

ZR=H-5~SPAT-EA

ZR-H-8-SPAT-EA

Scen at no H,0 Absorption ZR-H-8~SPAT-EA

(Ta = TOO°F)

Flow Characterization
(Te. = 1000°F)

Flow Charscterization
(Ta = 1000°F)

ZR~H-T-SPAT-EA

ZR~H~10-SPAT-EA

Velocity Ratio - Blower Wide ZR-H-8-SPAT-EA, PYRO, SCH-H-3

Open (Ta = 1000°F)
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TABLE L4 (Cont'd)

Test Instrumentation &
No. Date Type Location
33 6/26/70 Velocity Ratio - Blower Inlet ZR-H-8-SPAT-EA, PYRO,
Restricted (Ta=1000°F) SCH-H-3
3k 6/26/70  Air Temperature (Ta = 100°F)  ZR-H-8-SPAT-EA, PYRO,
SCH-H-3
35 7/1/70 Air Turbulence-1/2-inch Screen ZR-H-8-SPAT-EA,SCH-H-3, PYRO

Grid (Ta = 1000°F)

36 7/1/70 Velocity Ratio-Blower Inlet ZR-H-8-SPAT-EA, SCH-H-3, PYRO
Restricted (Ta=1000°F)

37 7/1/70 Velocity Ratio-Blower Inlet ZR-H-8-SPAT-EA, SCH~H-3, PYRO
Restricted (Ta=1000°F)

38 7/1/70 Air Turbulence-1/8-inch Screen ZR-H-8-SPAT-EA,SCH-H-3,PYRO
Grid (Ta=1000°F)

39 7/1/70 Flow Characterization ZR~H-9-SPAT-EA, SCH-H-3,PYRO
(Ta = 1000°F)

Lo 7/1/70 Air Turbulence-1/2-inch Dem ZR-H-8-SPAT-EA, SCH-H-3, PYRO
(Ta = 1000°F)
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High Temperature Alr
Medium Temperature Air

Low Temperature Air
High Velocity Air
Low Veloclity Air
1/2-inch Screen
1/8-inch Screen
1/2-inch Dam

Check-out Runs¥#*

Runs 10%, 1l%, 12, 13, 1k, 16%, 17, 18,
30, 31, 39

Runs 19, 20, 21, 22, 23, 2L, 25, 26, 27,
28, 29

Run 34
Run 32
Runs 33, 36, 37
Run 35
Run 38
Run 40

Runs 1, 2, 4, 021, okl, 5%

Setting the various utilities on a given test day consisted of a number of

calculations referenced to the local atmospheric pressure and empirical

data gathered during sub-system checkouts. A typical test set-up is sum-

marized below. The various working equations group all "fixed" variables

and are unique.

a) Water System: Fixed conditions based upon check-out tests.

Set tank 1 pressure to 1140 psig and tank 2

pressure to 1110 psig.

b) Air System: Phyet = 1.026 P, . Select proper blower inlet

restriction from empirical plot of PDuct"Pa versus

percentage inlet restriction.

#These tests also included film coclant and 2-D studies.
#*The data were run at conditions similar to high temperature alr tests.
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¢) Film Coolants : The low pressure {ilm coolant upstream duct pres-

i 1
sure is selected from & generated plot of PDuct

versus T, ~with P . ~as a parameter. The high

tm m

pressure film coolant upstream duct pressure is

determined from PDuct = 1,87 Patm'

d) Propellant Flows: P, = 29.35 P oip Assuming an\?c* = 96.6,

VIox © 409 P . @nd Pp, . is derived from an

empirical plot of PTank versus &LOX'

Hydrogen flowrate = ,0818 Potm 804 Ppgy is
derived from an empirical curve of PTank versus

&GHQ as a function of TGHQ"
After pre-chiiling the injector with LN,, the various utilities are loaded
to their respective pre-test values. The oxidizer lines are chilled with
LOX and the countdown is initiated. A typical sequence of events is pre-
sented in Table 5. The calculated test firing data for the 36 conducted
experiments is given in Appendix 6. A summary of the averaged test firing
data for the principal parameters conforming to the aforementioned experi-
ment groupings is given in Table 6. These data also include calculation of
the variance and standard deviation when more than one run was made to

characterize a given condition.

In general, testing went smoothly and transient behavior was not a problem
(see Appendix 2). With the exception of Run 15 where ignition did not
occur and Run 17 where the LOX regulstor did not maintain a constant LOX

tank pressure, all sube-systems performed normally. The air system and the




TABLE 5

TYPICAL SEQUENCE -~ RUN 22

'Seconds
Start,#1 H,0 On, #2 H,0 On 0. 000
Cemera ON L, 555
LOX Power ON 5. 420
LOX OPEN 5. 520
LOX Full OPEN 5,560
TEB ON 5. 665
GH, Power ON : 5.665
GH, OPEN 5.985
GH, Full OPEN 6.150
TEB OFF 6.335
GH, Power OFF 15,900
LOX Power OFF 16,025
LOX OFF 16,060
LOX Full OFF 16,085
GH,, OFF 16.158
GH, Full OFF 116,320
Camers OFF 16, 475
#1 50, #2 H,0 OFF 19. 960
Sequence OFF 20,210
Duration - GH, Full OPEN to LOX OFF 9,910
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GN2 film cooclant systems deviated slightly from the theoretically derived
operating or pre-set conditions. These deviations were caused by the
flows adjusting to the actual conditions within the mixing chamber upon
the onset of supersonic flow. The ejector characteristics of this stream

cause a moderate increase, over the design value, of the GN, film coolants

and air streams. This behavior was noted during the checkout firings, but,
since the increases noted were only approximately 10% and did not signi~
ficantly alter the flow field under investigation, modification to these

sub~systems were deemed unnecessary.

Examination of Table 6 together with the individual results given in
Appendix 6 indicate that the experiments were quite reproducible, there-
fore, side by side comparisons can be made. The groupings of the experi-
ments given at the beginning of this section include both characteriza-
tion experiments, high temperature and medium temperature air tests, and
diagnostic information, i.e., 2-Dimensionality, film coolant effects, low
temperature air, air velocity, and air turbulence level. A discussion of

this information will be given in the following paragraphs.

Among the checkout runs were some to ascertain if stable combustion was

attained.

The basic combustor utilized as the generator for the supersonic fuel-rich
combustion products did not have a history of any detectable instabilities;
however, the changes made to that engine raised the possibility that insta-

bilities might have been present in the configuration utilized. The initial
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measurement attempt utilized a streak camera focused at the exit plane of
the combustor. Due to the relatively low intensity level in the plume,
exposures could not be recorded at the framing rates required. The next
attempt utilized an AC radiometer as the measurement device. Measurements
were made on three test firings and the data were reduced. No indication
of any mode of instability was evident, only noise which is a character-

istic of typical rocket engine behavior.

DATA COMPARISONS

Data Cross Plots

A major portion of the zone radiometer data is presented in Figs. 36 to
39. They include temperature and H20 partial pressure maps for the two
with characterized cases of high temperature (829 F) and medium tempera-
ture (612 F) air. The reference case for all data comparisons is the

82G ? air tests. All diagnostic information was gathered utilizing this

nominal air stream temperature.

The boundaries of the apparatus and the theoretical mixing axis are super-
imposed on these figures. The actual data points for the various zone
radiometer positions are connected by solid lines. Attempts to smooth
these data are superimposed with coded lines representing a particular
isotherm or isobar. The code for the smoothing curves is referenced to
the code for the data points. An identification key is given in the

figures.
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Comparison of the smoothed data curves (idealized data) to the actual data
curves as the mixing layer penetrates the air stream indicates non-monotonic
behavior. At the onselt of mixing, variable mixing rates are observed and
no similarity between actual and idealized behavior is apparent. However,
similarity is obtained farther downstream. Abramovitch, Ref. 12, gives

some Jjustification for this behavior. His experiments indicate that as

the velocity ratio goes to infinity the maintenance of constant pressure
mixing can only be accomplished if a vortex exists near the entrance to the
mixing chamber. This hypothesized vortex appears to be present in this
experiment, see infrared photograph, Fig. 4-13. Therefore, the "washing-

out" of the data in the near field appears due to this vortex.

The vortex affects the temperature data to the greatest extent. This
indicates that it is relatively weak and only recirculates a small gquantity
of combustion products from the very edge of the mixing region; if it were
strong the actual temperature data would not converge to the smoothed data
near the mixing chamber exit. In addition, it would have a much greater
effect on the concentration data. It should be noted that every individual
little jog in the data defies explanation. The data presented represent
only one run at each location; therefore, a host of reasons could be brought

to bear.

Data reliability was checked by two sets of runs made at identical condi-
tions (Runs 021 and 10 for 829 F air and Runs 23 and 27 for 612 F air) and
are included in Figs. 36 and 37. Agreement is reasonable; howvever, it is

not within the precision that would yield great confidence in the data
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obtained. However, this does not compromise the data obtained, it does
indicate that a much larger quantity of data is necessary before concrete
arguments can be presented in support or disagreement with available
theories. Although an Edisonian approach would have been desirable from
a statistical standpoint, i.e., 3 to 4 tests at each condition, the objec-

tives and the available funding precluded this.

The measured temperatures and H,0 partial pressures were compared to theo-
retical values. The results of this calculation which utilized mixture
ratio as a parameter is presented in Fig. 40. Comparison of the zone
radiometer measurement maximums taken in the unmixed core of MR 5.0 at the
initiation of mixing to these data show fairly good agreement (tlS%). The
measured maximum HyO0 partial pressure was 0.5 atmospheres and the theoreti-
cal value was 0.61 atmospheres while the recovery temperature maximum

was 2500°K and the theoretical value was 2130°K.

Two-Dimensionality and Film Coolant Experiments

A series of runs, 5, 10, 11, and 16 were conducted to determine if the flow
was indeed two-dimensional and what effect the film coolants had on the

mixing process. Both zone radiometric and photographic data were gathered.

Direct color photographs, Figs. 41 (a side view) and 42 (a rear view) indi-
cated that the flow was indeed two-dimensional. Additional data, to reaffirm
this fact, were gathered with schlieren photography and zone radiometry

measurements viewing the test section from the top, aft of the exit. The
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Schlieren photographs are shown in Figs. L-1 and L-2. Figure L-2 was

taken in the middle of the stream and indicates a uniformly mixed highly
turbulent flow field. Figure 4-2 is a similar view; however, the Schlieren
apparatus was relocated to have the mixing between the ambient environment
and the exhaust stream in its field of view. Again, a uniformly mixed
highly turbulent flow field was evident; however, it is of particular
interest to note that a distinct boundary between the film coolant stream
and the exhaust products stream is not evident. This indicates that the
film coolant stream has mixed into the supersonic stream. Therefore, zone
radiometry measurements should indicate a reduction in temperature at the
boundaries of the flow. This prediction was confirmed in Fig. 3-7. This
figure shows a plot of the flame radiance as a function of position. If
the emissivity was constant, this plot would be directly related to tempera-
ture%*; however, the figures does indicate that nitrogen dilution takes
place along a given horizontal line of sight. In summary, experimental
evidence indicates that the flow is two-dimensional with some nitrogen
dilution near the vertical walls. A calculation was made to determine the
maximum temperature drop in the combustion products and air stream at the
exit of the mixing chamber assuming that all of the film coolant was com-
pletely mixed with the streams of interest. It was determined that a maxi-
mum of & 40O F drop could occur in the combustion products stream and
approximately a 200 F drop in the hot air stream. It should be noted that

these calculated temperature drops are & maximum value.

#Due to the great difficulty and cost of locating the greybody for the
data taken from the top, only emission measurements were made and, there-
fore, actual. temperatures cannot be calculated.
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No other deleterious effects were noted that could be attributable to the
film coolants. During two experiments the film coolants were turned off
for approximately 2 seconds. Visual observation confirmed by the photo-
graphic coverage indicated that the plume adjusted its position to fill
the voids in the mixing chamber caused by the lack of film coolants;

however, no change in the location of the mixing line was apparent.

Temperature Effects

The effect of air temperature on the mixing is indicated in Figs. 36 to

39 and Fig. 43. Figure 43 is a representation of the diagnostic (screening)
experiments taken at position number 8. Only the air temperature data

(Run 34) from that figure are utilized in this discussion. Data comparisons
for identical run conditions except for a variasble air temperature indicated
that thermal penetration increases and'concentration (HQO partial pressure)
penetration decreases with decreasing air temperature. The behavior ob-
served for the indicated trend of the thermal penetration or mixing is

contrary to theory.

It has been established by Ferri, et al, Ref. 13, that mixing is propor-
tional toAgu_, The values of SDLXfor the air stream were 16.5, 17.0, and
19.0 for the respective air temperatures of 829, 612, and 278 F. The$3gg
of the combustion products stream was constant at a value of approximately
55.6. Therefore, on this basis, the charge in mixing should be small
(about 10%), but, a slight trend of decreased thermal mixing with decreas-

ing air temperature should have been evident.
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The contrary trend indicated by the temperature data possibly suggests that
thermal mixing is controlled by a different mechanism than momentum exchange,
i.e., Ferri's correlation. It should be noted that it is not being suggested
that momentum exchange has no effect upon thermal mixing, but rather, momentum
exchange and an additional mechanisms influence thermsl mixing. If one postu-
lates correlation of the basis of ?’CPT’ the enthalpy of the flows, it follows
that the greater the difference in enthalpy between the two flows, the greater
the mixing. This correlates, both quantitatively and qualitatively, the

thermal mixing described above.

Another possible reason for this behavior may be a result of the apparent
vortex observed near the onset of mixing. This vortex was described as
relatively weak and not interfering with the visible mixing line; however,
according to Ref. 12, it does have sufficient strength to alter the stream
lines. Therefore, the low pressure region caused by the vortex causes the
flow to expand ever increasingly as the temperature is lowered, thereby
indicating an increase in thermal mixing as temperature is lowered. Addi-
tionally, this effect does not significantly affect the concentration
profiles because the vortex recirculates alr which is at too low a tempera-

ture to induce significant chemical reaction.

Velocity Effects

The diagnostic data discussed in the following two sections were all taken
at one line of sight and consisted of one test only. These tests were only

screening in nature. The effect of velocity is represented in Fig. 43. The
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velocity for the high velocity case was not appreciably greater than that
for the characterization experiments for 829 F air; therefore, comparison
will only be mede between the two tests indicated on the figure. The trends
indicated show thermal mixing decreases slightly as the air velocity de-
creases and the concentration profiles make a greater penetration into the
air stream as the velocity decreases. This latter result is consistent
with the arguments presented above; however, the thermal mixing again is
contrary to anticipated behavior. Rationalization of this apparent incon-

sistency would require additional experimentation.

Turbulence Effects

Alteration of the turbulence level of the air stream was accomplished by
the insertion of screens (1/2-inch and 1/8-inch mesh) and a 1/2-inch dam.
With reference to Fig. u3, the thermal mixing decreased as the screen mesh
size decreased and approached the thermal mixing characterized in Fig. 36.
The decrease in mixing as one goes to a finer mesh size indicates that
gross increases in turbulence scale will increase mixing while decreasing
the scale tends to laminarize the flow and create a situation identical to
that which existed withbut the presence of induced turbulence. Thermal
data gathered for the l/2-inch dam were practically coincident with the
1/2-inch mesh screen. All of these devices indicated that thermal mixing
was enhanced if the physical character of the flow was significantly altered;
however, this was not the case for the concentration profiles. All of them
were similar and portrayed a decrease in mixing (when compared to Fig. 37)

with asugmentation of the inlet characteristics. It is well known from the
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literature, Ref. 1k, that alterations of the inlet conditions delay the
intimate contact of the streams to be mixed and cause a displacement of
mixing by the length of the potential core of any deadwater region that
retards stream contact, i.e., retards mixing. However, this deadwater

region is in itself a vortex and may give rise to additional vortices in
the stream of insufficient thermal content to cause additional chemical
reaction, but having sufficient heat to warm the flow. This supposition

permits explanation of the contrary trends observed.
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CONCLUSIONS AND RECOMMENDATTIONS

The mixing flow field of a supersonic fuel-rich hydrogen/oxygen two-dimensional
Jjet and a subsonic heated air stream was mapped in temperature and HEO concen-
tration. Two reference cases of 829 and 612 degree F air streams in addition to
several single runs at varying conditlons of temperature, velocity, and tenmp-
erature level were evaluated. In the following paragraphs a number of conclusions

and recommendations are given.

1, The concentration measurements and trends in this data are consistent
with existing mixing theories. Mixing increases as air temperature is
increased, air velocity is decreased, and inlet conditions are stream-~

lined.

2. Correlation of the temperature measurements could not be made within

the confines of available theories.

3. The experiments were indeed two-dimensional and the use of film coolants
did not alter the mixing process; however, the film coolants did slightly

reduce the temperature of the streams of interest.

L. Zone radiometry is a useful tool for the measurement of flow properties,
however, to establish a valid confidence level for zone radiometric
measurements a statistical data sample (approximately 3 to 4 measurements)

a1 each data location should be gathered.

5. The flow facility performed excellently and appears capable of performing

& large Number of additicnal tests.
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6. The vortex that possibly appeared in the flow was relatively weak

and did not appear to affect the concentration messurements,

It is recommended that the apparatus be utilized for a more comprehensive
experimental program. This program would provide well controlled precise
experimental data for the determination of the effects of temperature ratio,
turbulence level, velocity ratio, and changes in ambient conditions upon the
mixing. The characterization of the mixing region should include & mapping of
temperature, velocity, pressure, concentration, enthalpy, and turbulence intensity.

Recommended experiments that will help to gather the required data are as follows:

l. A complete set of diagnostic experiments to accurately determine the
two dimensionality of the flow field and the effect of film cooling

on the mixing region (approximately 20 tests).

2. A mixing study that includes a more precise mapping of the mixing
region for the basic case, then a determination of the effects upon
the mixing layer produced by changes in the air turbulence level,
air temperature, inlet geometry, and velocity ratio (approximately

120 tests).

3. Tests with a 002 seeded air stream. The use of this tracer enables
further elucidation of the penetretion of the air stream into the

combustion products stream (approximately 10 tests).

4. Testing, which would require additional hardware, over a more complete
range of experimental variables. These would include different mixture
ratios, a wide range of combustion product-sir stream velocity ratios,

and elevated test section pressures (approximately 150 tests ).
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APPENDIX 1

MANOMETER BANK DATA

A summary of manometer bank data is presented in Table 1-1. The location of the
static pressure ports is given in Fig. 1-1 (Ref, Fig. 3-57 for orientation to
the test apparatus). The display of static pressure data for the individual

runs is given in Figs. 1-2 to 1-36.

For comparisoh purposes the data were grouped according to the following:

High Temperature Air Runs 10%, 11, 12, 13, 14, 1é6%, 17, 18, 30,
31, 39

Medium Temperature Air Runs 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29

Low Temperature Air Run 34

High Velocity Air Run 32

Low Velocity Air Runs 33, 36, 37

1/2'" Screen Run 35

1/8" Screen Run 38

1/2" Dam Run 40

Checkout Runs*¥* Runs 1, 2, 4, 021, OL1, 5

#These tests also included film coolant and 2-D studies.

##These data were run at conditions similar to high temperature air tests,
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TABLE 1-1

MANOMETER BANK DATA¥

Tube Run Number
No. 1 2 I 021 041 5 10 11 12 13
1 1.36 1.3  1.36  1.36 1.36  1.36 .15 3.4 ND .16
2 1.756 .38 402 .29
3 1.36 45 4,52 ik
4 1.21 .01 2.42 .17
5 .29 1.2 1.28 1.28 1.28 .01 .01 .01
6 1.36 1.36  1.36  1.36 1.36 47 4.67 ik
7 1.36 1.36 : 1.36 .35 4,92 .34
8 1.12 ‘l 1.32 l_ 1.32 - .03 -
9 1.36 v 1.36 1.36 -.36 3.32 -.27
10 -.01 .00  -.01 .02 .02 .02 - - -
11 .05 J11 .09 .03 .02 .03 -.01 -.18 -.01
12 .03 .08 .06 .09 .08 .76 -.01 -.09 -.01
13 1.36 1.36 1.36 1.36 1.36 1.36 .26 4,92 .26
14 1.11  1.36 1.36 1.36 1.3% 1.36 .06 .06 .06
15 1.09 .09 .10 .07 .07 .07 - 3.6 -
16 .0k .10 .07 1% .10 L 11 .01 .12 .01
17 1.20 1.36 1.36 1.36 1.3% 1.3%6 .05 .05 .05
18 1.28 1.36 1.36 1.36 1.34 1.34 0 0 0
19 .06 -.06 -.13 .14 .10 .10 - - -
20 1.36  1.36 1.36 1.36 1.36 1.36 .15 5,92 .16
21 .11 .23 .18 .33 .27 .27 -.03 .33 -. 0L
22 .15 .33 .25 40 .38 .38 - 415 -
23 .10 .23 .18 .35 .30 30 -.05 .34 -.09
ok -.11 .20 .13 .28 Lok 24 - .33 -
25 -.24  -,187 .24 .09 10 .10 - -.07 -
26 -.14 .01 2k .10 .15 .13 0 0 0
27 A .10 .09 J14 1k .12 =301 .15 -,01
28 .17 .35 .28 43 140 <39 - A -
29 -.05 .08 .02 .16 o1k .10 - .16 -
30 ~,1h - 14 .01 .06 .01 .06 - -, 02 -
31 433,668,563  .758  .758  .679  .750 .762  .750  .750

*A11 pressures are in peig
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TABLE 1-1 (CONT'D)

Tube Run Number
No. | 25 26 27 28 29 30 31 32 33 3
1 | 3.6k 3.63 3,62 3,64 3,83  3.7%  3.71  3.81 3,49  3.81
2 §,62 4,62 4,69 4,62 4,62 4,62 o62  he62 4,606 e 62
3 | 5e39 4,16 4,18 4,31 4,48 4,42 4,40 4,41 4,06 4,35
4 <72 .62 63 .70 .70 .72 70 W7k .72 .70
5 |-,00 -,00 -.,00 -,01 -,00 -,00 -,01 =-,02 =-,01 @ -,02
6 | %.63 k.56 4,55 k.64  A,64 4,68 4,64 4,65 4.5% 4,65
7 | 4.48 4,79 4,48 448 4.8 4,48 4,78 4,48  L,4B 4,48
8 A2 .36 .38 .39 .38 42 .37 51 .50 49
9 [3.23 3,13 3.02 3.2k  3.46 3,33  3.39 3.38 2,92 3,16
10 07 L1k .28 2% ,16 .13 .09 .13 11 .08
11 17 0 W17 170 Wk .17 .16 A7 .17 o 0k .17
12 .10 .10 .11 ,08  ,09  ,09 .09  ,09 .01 .10
13 4,40 4,67 4,67 4,67 4,67 L4.,67 4,67 4,62 4,62 4,62
14 .05 .08 .05 05 L05 .06 .05 .06 .06 .05
15 06 .06 .06 .06 .05 .06 .05 .05 .06 .05
16 A2 .13 .13 .11 .12 .12 .12 .11 .01 .13
17 L0k ,04 0L ,0% .03 L0k .03 .03 .0k .03
18 |-.00 ,00 ,00 ,00 -,00 .00 -,00 -,01 -,00 =-,01
19 .08 .11 .20 .10 .09 .21 .22 .06 .05 .11
20 | 4,48 k.47 4,52 h.A47 b b7 A7 kA7 LW8 4,51 4,48
21 31 W31 30 .77 W30 .29 .30 .30 .08 .31
22 <36 036 - 3k «32 o34 34 «36 <36 «09 1
23 33 o3k 3L .27 .32 .30 .33 032 .10 33
o4 25 026 o2k .19 .23 022 .23 023 .02 o224
| 25 | -.02  ,02 0% .02 .02 02 .02 .02 .03 .03
| 26 |-.00 -.00 .00 -,00 -,00 =-,00 .00 =-,00 ~-,00 =-,01
o7 16 0 W17 W17 W12 L1500 13 5 L1k L03 .17
. 28 AL A2 42 A L0 39 A1 L4013 .38
29 12 .12 .10 .10 .12 .11 .12 11 -.00 .50
%0 | -,00 -,00 -,00 -,00 =-,00 -,00 ~-,00 ~-,01 =-,00 .03
31 670  ,660 ,6L0 ,631 .630 ,666 667 .60k ,208 571
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TABLE 1-1 (CONT'D)

Tube Run Number
No. | 35 36 37 38 39 40
1 376 3.68  3.65  3.66 3.90 3.86
2 4,62 4,62 4,62 4,62 4,62 54,62
3 4,31 4,40 4,20 4,43 4,46 4,16
4 .83 .83 .86 «87 «85 .19
5 -,11 =-,11 =~-,10 -,11 -.11 -.11
6 4,65 4,65 4,65 4,65 4,65 4,065
7 L,o48 4,48 4,48 4 k4B L,48 4,48
8 49 51 .48 49 52 5l
9 3,14 3,48 3.25 3,53 3.48  3.15
10 -,01 -.00 .00 -,02 .00 =~,03
11 11 .05 . Ok 005 17 .17
12 .06 .02 .01 .02 .10 .11
13 4,19 4,19 4,19 4,19 4,19 4,19
14 .06 .06 « 05 o Ok .06 .05
15 .06 .06 .06 .06 .06 .06
16 .05 .01 .00 .00 .11 .12
17 -.12  -,11 -,11 -.11 -.11 -,11
18 -.12  -.11 =-.11 -.11 -s11  -,11
19 .07 .16 .08 .10 .20 .08
20 L7 Lk 47 b A7 ALY L,o47  L,47
21 «15 .09 .08 011 »29 30
22 17 «10 .09 o 14 035 o 3k
23 »18 .12 .11 .12 031 032
254 .06 .05 « 04 o1tk .22 020
25 -,02 -,02  -,03 ~,02 -,02 -,02
26 -.00 -,00 =-,00 -,00 -,00 ~-,00
27 .10 + 05 o 04 . 04 o 14 .16
28 .12 .16 « 15 o 14 .40 <40
29 .00 ~-,00 =-,00 -,00 o11 .05
30 00 -,00. -,00 -,00 -,00 =-,00
31 813 .216 206,828 677 705
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Table 1-2 presents the grouped data for the aforementioned tests; however, data
for the checkout runs and tests 10-14 are not included in this data summary.
The checkout run static pressure data were questionable due to frequent spill-
over and bubble formation in a large number of the manometer bank tubes. Data
for runs 10 to 14 only included information prior to engine start due to a
malfunction of the data acquisition system, These data in general show that
initially there is an approximate .5 psi positive pressure at the top of the
mixing chamber and an approximately .02 psi negative pressure at the bottom of

the mixing chamber. The averaged data are displayed in Figs. 1-37 to 1-39.

Analysis of the data presented in Table I-2 is summarized below:

(1) Pressure port numbers 1, 2, 3, 6, 7, 13, 20 were so located such that
they reflected the static pressure of the high pressure film coolant
streams and did not indicate the static pressure of the supersonic

flow.

(2) Pressure port numbers 5, 10, 15, 19, 2, 25, 26, 29, 30 were located
slightly upstream of the mixing chamber and reflected the entering
conditions of the film coolants and air stream. It should be noted
that these ports were in the region of separated flow as shown in the

velocity survey, Appendix 5.

(3) Pressure ports 4, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 27, and
28 yielded a reading that could permit interpretations of the data as
a function of test parameters; however, maximum static pressure vari-

ations were of the order of 0.3 psi, or less, which put the data
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Pressure

Port No,

EFEhREBoomvwouveswmm

TABLE 1-2

GROUPED STATIC PRESSURE DATA, PSIG

High  Medium Low High Low 1/2n 1/8n 1/2n
Temp. Temp, Temp. Velocity Velocity Secreen Screen Dam
3.70 3.70 3.81 3.81 3.61 3.76 3.66 3.86
L.T71 L. 66 4,62 L,62 4,63 4,62 4,62 L, 62
4L.40 by b2 L.35 L.hl 4,25 4.31 Loh3 4.16
-,02 .02 -,02 -.02 -,07 -.11 -.11 -,11
L.61 b6l L.65 L.65 4,61 L.65 L.65 4,65
L.69 L.62 L.h8 L.L8 L.4L8 L.48 L. 48 448
A2 42 49 .51 .50 49 49 .51
3.45 3.30 3.16 3.28 3.22 3.1 3.53 3.15
R 17 .17 .17 04 1l 05 L7
.25 11 .10 .09 01 .06 .02 .1l
L.72 L.6L 4,62 4,62 4,33 4.19 4.19 4.19
.06 .06 .05 .06 .06 .06 .04 .05
.30 .18 05 .05 06 .06 .06 .06
.28 .13 .13 .11 01 .05 0 A2
4L.58 L.56 4,48 4,48 L.48 L. L7 Lo L7 Lo L7
40 .31 .31 .30 .08 .15 .11 .30
by .36 34 .36 .09 L7 VA <34
0L|r2 033 033 032 011 -18 11-2 032
34 027 SRl .23 04 .06 cAd .20
0 0 =,01 0 0 0 0 0
21 .07 17 14 04 .10 0l .16
.50 42 .38 40 .15 .12 1 40
.23 013 .50 .11 0 0 0 .05
12 01 .03 =,01 o 0 0 0
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within the range of experimental error. Therefore, no interpreation
of the static data gathered will be given., The small variations
measured for the different test cases did, however, indicate that the

range of parameters investigated did not significantly alter the basic

mixing process,
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APPENDIX 2

TRANSIENT DATA

At the beginning of testing a detailed study of the system transient
behavior was made. This included examination of all system pressures and
temperatures. In general, during engine operation every parameter after
the first second of engine operation indicated acceptable steady-state
operation. Coolant water temperatures were well below the critical boiling
peint. All pressures and temperatures were constant with the exception
of the heater bed temperatures and air inlet temperatures., Since air
inlet temperature was a principal parameter, its transient behavior for
Runs 10 to 40 is presented in Figs. 2-1 to 2-6. Slight variations in
chamber pressure (+ 1.5 percent) were also noted. Due to its being a
critical test parasmeter, it too is presented for Runs 10 to 40, Fig. 2-7

to 2-13.

Some flow adjustments in the non-choked film coolant and air supplies were

evidenced at the beginning of each run. However, these adjustments occurred

during the initial start-up period.
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APPENDIX 3
ZCNE RADIOMETRY DATA

Graphical representation of the zone radiometry data are presented in Figs. 3-1
to 3-55, For clarity, the data are presented in two groupings. Those data
that are directly calculated from the spectrometer output, i.e., flame radiance,
N, and emissivity,& (Figs. 3-1 to 3-29) and those data that are derived from
subsidiary ealculations, i.e., plots of apparent flame temperature, T, and H20
partial pressure, P (Figs. 3-30 to 3-55). The physical location of the instru-
mentation positions is illustrated in Fig. 3-56 and a schematic of the test
section denoting principal dimensions is shown in Fig, 3-57. The conversion
of line-of-sight (LOS) to the physical dimensions of the apparatus is given in
Table 3-1, It should be noted that LOS refers to the vertical axis and the

position numbers refer to the longitudinal or horizontal axis.
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TABLE 3-1

CONVERSION OF LOS TO PHYSICAL ENGINE DIMENSIONS
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Run
021,
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AFPENDIX 4

PHOTOGRAPHIC DATA

As mentioned previously a number of photographic measurements were utilized to
provide visual information supplemental to the optical data collection. These
measurements include schlieren, ultra-violet, infrared, color, and photo-

pyrometry photography. A presentation of these data follows,

SCHLIEREN PHOTOGRAPHY

Schlieren photography was utilized to gather data on the gross effects produced
by changes in test conditions upon the momentum boundary layer between the sub-
sonic and supersonic streams. The knife edge was horizontal in order to
accentuate gradients in the vertical direction. Photographs representing the
experiments are shown in Figs. 4-1 to 4-10, The field of view of the schlieren
camera was approximately B-iﬁches by 3-inches, The data extracted from the

films together with a definition of the test conditions is given in Table 4-1,

Figures 4-1 and 4-2 represent a top view of the mixing region at the mid-stream
and at the edge, respectively. These views indicate that the sidewall film
coolant layer has been completely penetrated by the combustor exhaust stream,
i.e., the 2-dimensionality of the combustor exhaust products stream has been
augmented by mixing with the film coolant. Also shown in Fig. 4-2 is the mixing
between the mixing chamber exhaust with the ambient environment. The angle is

approximately ll-degrees which is similar to the éngles observed for mixing

between the combustor exhaust products and air streams. The coarse texture of

these prints is indicative of the turbulence scales,
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Flow —3»

Figure 4-1. Schlieren From TopyAft of Mixing Chamber Exit -
Midstream - Run 5

Atmosphere ———pn

Flow . 4

Exhaust
Products ~— %

Figure 4-2. Schlieren From Top}Aft of Mixing Chamber Exit -
Edge - Run 11
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Mixing
~sf——— Flow

Region

Figure 4-3. Schlieren From Side ~ Aft of Mixing Chamber Exit - Flow Axis -
Run 13
ag-ee- BXhaust Products

affessss- Fdpe of Mixing Region

——— Flow

ke Air Stream

Figure L-4. Schlieren From Side - Upstream Window - Air Stream -~ Run 39
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Air Stream o=

Figure 4-5. Schlieren From Side - Middle Window - Air Stream - Run 19
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Products ¢ Flow

4+Edge of Mixing Region

=
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Figure L~6,., Schlieren From Side - Upstream Window - Flow Axis - Run 22

226



@ FExhaust Products
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Edge of Mixing layer

a—— Flow

4= Air Stream

Figure 4-7. Schlieren From Side - Upstream Window - Air Stream - Run 34

P Exhaust Products

4Fdge of Mixing Region

-——— Flow

“%-Air Stream

Figure 4~8., Schlieren From Side - Upstream Window - Air Stream - Run 33
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g Tyhaust Products

" Edge of Mixing Region

-

Flow

<-Air Stream

Figure 4-9. Schlieren From Side - Upstream Window - Air Stream - Run 32

 «<&———— Exhaust Products

o~ Edge of Mixing Region

- Flow

@ Air Stream

Figure 4-10, Schlieren From Side - Upstream Window - Air Stream - Rur 4O
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Run #

11
13
19
22
32
33
34
39
40

Test Type

High Temperature Air
High Temperature Air
High Temperature Air
Medium Temperature Air
Medium Temperature Air
High Velocity Air

Low Velocity Air

Low Temperature Air
High Temperature Air

1/4" Dam

# Schematic

TABLE 4-1

SCHLIEREN DATA

Defined Lines3t

\

1 Deg. 2  Deg.
11° -—
10° 8°
90 20
11° 8e°
14° 13°
15° -
lho 80
60 So
1 Edge of Mixing Region
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Fig. #
L~1

L-3
L-5
L6
L7

L=7
Ll

4-10

Inner Boundary of Reaction Zone




All of the remaining schlieren figures represent the mixing between the combustor
exhaust products and air streams, Figure L-3 shows a side view of the mixing
region near the idealized axis of flow (line between the two streams and mixing
centerline) at the same plane utilized for the top view measurements. Relatively
uniform mixing was indicated and the scale of turbulence appeared in good agree-

ment with that observed in the top views,

Grouping all of the tests as a function of air temperature (Figs. 4-4 to 4-7)
indicated no clear trend for the angle observed for the momentum boundary
layer (the angle ranges being 9 to 15 degrees). Although data reduction is
relatively crude, these data indicate that changes in air temperature of
approximately 700°F have no appreciable effect on the mixing region. The
average of these four measurements was 12 degrees which agrees quite well with
that observed for the mixing between the exhaust and the enviromnment., Of
pgrticular interest is the obvious change in the scale of turbulence between
data collected aft and through the mixing chamber. The scale of turbulence is

much smaller or finer inside the chamber,

The velocity tests (Figs. 4-8 and 4-9) yielded data that was within the range of
the air temperature tests; however, these data indicated that air velocity is

a significant mixing parameter; the lower the air velocity the more rapid the
mixing., A 240 ft/sec decrease in velocity produced a 3-degree increase in the

angle between the mixing layer and the air stream.

Comparison of the schlieren data for the 1/2-inch dam data (Fig. 4-10) with the

previously described data indicates that a thin physical boundary is a
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prerequisite for valid mixing experiments., What normally would be considered an

insignificant change in thickness of the lip halved the mixing rate.

No correlation of the data for the inner boundary (the second defined line) that
was indicated on a number of the schlieren figures was obtained., The observed
angle ranged from 2 to 13 degrees and the difference in angle between the two

lines ranged fram 1 to 7 degrees,

INFRARED PHOTOGRAPHY

Infrared photography in the 7000-85004 band was utilized to record Ho0 emission
in the mixing chamber. This coverage was utilized on any firings where optical
access was available, Photographs representing the experiments are shown in
Figs. 4~11 to 4-22, The field of view of the camera was approximately l2-inches
by 12-inches. The data extracted from these films together with a definition
of the test conditions is given in Table 4-2. The soft texture of the photo-
graphs is an inherent problem in field type IR and UV photography. In addition,
black and white reproduction of the color prints promotes further softening,

The high temperature zones in the prints are the darkest regions; however, it
should be noted that objects that are in shadows also appear dark. Therefore,
great care must be exercised so that incorrect information will not be read

into the analysis,
In general, three defined lines appear on the prints at the most upstream posi-

tion. The lower line defines the extent of mixing into the air stream. The

second line appears to be the upper boundary of the reaction zone and the
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~———Flow

Figure 4-11. Infrared Print - Upstream and Middle Windows - Run 16

<—— Flow

Figure 4-12, Infrared Print - Downstream Window and Aft of Exit - Run 17
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~<4—— Flow

Figure 4-13. Infrared Print - Mixing Chamber - Run 31

“4—— Flow

Figure L-14. Infrared Print - Upstream and Middle Window - Run 19
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- Flow

Figure 4-15, Infrared Print - Downstream Window and Aft of Exit - Run 20

~<¢— Flow

Figure 4-16. Infrared Print - Middle and Downstream Windews - Run 26
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~———o- Flow

Figure 4-17. Infrared Print - Upstream and Middle Window - Run 34

~<4——— Flow

Figure 4-18, Infrared Print - Upstream and Middle Window - Run 32
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Figure 4-19, Infrared Print - Upstream and Middle Window - Run 33

Figure 4-20. Infrared Print - Upstream and Middle Window - Run 35
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Figure 4-21, Infrared Print - Middle Window - Run 38

Figure 4-22., Infrared Print - Middle Window - Run 4O
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Run #/

Fig. #

16/4-11
17/4-12
19/4-14
20/4-15
26/4=16
31/k-13
32/4-18
33/4-19
34/4-17
35/4-20
38/4-21
4O/ 4-22

TABLE L-2

INFRARED PHOTOGRAPHIC DATA

Test Type

High Temperature Air
High Temperature Air
Medium Temperature Air
Medium Temperature Air
Medium Temperature Air
High Temperature Air
High Velocity Air

Low Velocity Air

Low Temperature Air
1,2" Screen

1/8" Screen

1/2" Dam

#* Schenatic

3
_ K/ﬁ/_?i},\__
: (2]
2
1 /,/ .

L

10

103

11

[ Sxd

Q3¢

WO

I

Defined Lines and Location®

1,96 4L ~ 1,66 70

2,94 8 -~ 2.20 -
2,11 6 - 1,9 -
2.5 2 - 1.93 -
2.95 6 - 2.00 -
2.17 4 - 1.81 -
2,08 5 - 1.67 69

2.28 1 - 2.03 -
2,19 2 - 1.73 -
2,27 ——-—- -
2,41 e e

Edge of Mixing Region
Inner Boundary of Rea
Supersonic Plume Expa
Upper Edge of Transie

- T

- .60

— 78
— 8
— 76
—
— 78

ction Zone

nsion Fan
nt Eddy

Deg. {1!Inch Deg.(2) Inch Deg.(3) Inch Deg. (%) Inch

3.85
3.83
3.85
3.92
3.68

Spatial locations are referenced to the top of the upstream window
frame on the downstream edge

#+#Reference downstream window downstream edge
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third line defines the plume expansion fan eminating from the nozzle tip. 1In
some cases, Figs. 4~17 to 4-22, a fourth line appears that has a slope in the
same direction as the expansion fan; however, it is located in the middle of
the air stream and does not appear to be attached to any physical object.
Initially, no explanation could be offered for its existence; however, a more
detailed analysis of the prints, and in particular Figs. 4~13 and 4-14, led to
the following postulation. An eddy exists in the air stream causing a recircu-
lation pattern to exist; therefore, the line that appears in the air stream
indicates the presence of the eddy. Since the eddy does not appear in all
prints, it is further postulated that it is relatively weak and very sensitive
to small changes in the run to run test conditions. The theoretical justifica-

tion for the existence of this eddy is given in Abramovitch, Ref, 12,

Representation of the tests that were concerned with temperature effects in the
mixing process are given in Figs. 4-11 to 4-13 for high temperature air, Fig.
L-1) to 4-16 for medium temperature air, and Fig. 4-17 for low temperature air,
No strong effect of air temperature on the mixing process was evident as the
change in the angle representing the edge of mixing was only 2 degrees, i,e.,
approximately 10, 9, and 8 degrees for high, medium, and low temperature air
tests. Correlation of the spatial locations was not as clearly defined as some

overlapping occurred.
The mixing rate as a function of velocity (Figs. 4-18 and 4-19) defined by the

angle of the mixing line did not appear to change (9-degrees for both cases);

however, examination of the spatial location did present evidence that mixing
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is enhanced by lowering the velocity of the air stream (2.08 inches for the high
velocity stream and 2.28 inches for the low velocity stream). A more detailed

examination of the print revealed that for the low velocity test the postulated
eddy was present which could explain why no apparent change in the angle of the

mixing line was observed.

The infrared prints representing the studies that incorporated screens in the
air stream were inconclusive, Figs. 4-20 and 4-21. On the basis of the angle of
the mixing line the data indicated that the finer the turbulence the better the
mixing; however, on the basis of the spatial location of the mixing line the
opposite appeared true, It should be noted that the eddy discussed above was

present in both of these prints and may have '"washed out! the true indications.

None of the three previously defined lines were apparent in the test utilizing
a 1/4~inch dam, Fig. 4-22; however, the eddy was again present. Since this
configuration promotes the formation of eddies, one would expect a stronger
eddy for this condition and it appears to be in more intimate contact with the

subject mixing process,

No correlation of the inner boundary of the reaction zone could be made due to
the wide spread in the data. The value of the angle ranged from 1 to 8 degrees
and the angular difference between lines 1 and 2 rahged from 2 to 8 degrees,
The high degree of scatter is most probably due to the relatively weak defini-
tion of the line. Good agreement was obtained for the angle of line 3;: however,

spatial resclution was rather poor,
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ULTRAVIOLET PHOTOGRAPHY

The ultraviolet photography in the 2850 to 31504 band was utilized to record OH
emission in the mixing chamber. As with the infrared photographic coverage, it
was utilized on all firings where optical access was available, Two types of
ultraviolet coverage were utilized, i.e., 16 mm cine photography and 35 mm
sequence photography (photopyrometer fudicial photographs). Photographs
representing the experiments are shown in Figs. 4-23 to 4-34. The field of view
was approximately 12 inches by 12 inches, The data extracted from these films
together with a definition of the test conditions are given in Tables 4-3 and
L-L, The extremely soft texture of the cine reproductions, Figs. 4-23 and 4=20 ,
is indegenous to field type operation; therefore, the principal ultraviolet
photographic analysis was conducted with the relatively well defined photo-
pyrometer prints. The regions of maximum emission on these prints is the

lightest region.

In general, the ultraviolet photographic data agrees with the observations made
with the schlieren and the infrared photography. The effect of temperature on
the mixing region, Figs. 4-23 to 4-29, is negligible, The measured angles
(approximately equal to 10 degrees) in the mixing chamber are essentially the
same; therefore, over the air temperature ranges encountered in this program,
mixing is essentially constant. It should be noted that the bulk of the photo-
pyrometry data was taken aft of the exit of the mixing chamber because in the
ma jority of cases the zone radiometer interfered with the view of the test

section windows., These data yield angles that are greater than those observed
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Figure 4-23. Ultraviolet Print - Upstream and Middle Window - Run 10

—— Flow

Figure 4-24, Ultraviolet Print - Middle and Downstream Windows
and Aft of Exit - Run 17
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<—Flow

Figure 4-26, Photopyrometer Print - Upstream and Middle Windows - Run 29

Figure 4-27. Photopyrometer Print - Mixing Chamber - Run 31
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Figure 4-28. Photopyrometer Print - Aft of Exit - Run 39
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Figure 4-29, Photopyrometer Print - Aft of Exit - Run 34
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Figure 4-30, Photopyremeter Print - Aft of Exit - Run 32
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Figure 4-21., Photopyrometer Print - Aft of Exit -~ Run 33
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73, Photepyrometer Print - ATt of Exit - Run 2




TABLE 4-3

ULTRAVIOLET PHOTOGRAPHIC DATA

Run No./ Test Type
Fig. No.

10/4-23 High Temperature Air
16 High Temperature Air
17/4-24 High Temperature Air
20 Medium Temperature Air

26 Medium Temperature Air

#* Schematic

Defined Lines#*

1 Deg. 2 Deg.,
9 L
10 6
10 7
11 6
12 9
1l Edge of Mixing Region

2
3

250

Deg.
T4
72
70

Inner Boundary of Reaction Zone

Supersonic Plume Expansion Fan



Run No./
Fig. No.

23/4-25

29/1,-26
31/4-27
32/4-30
33/4-31
3L/4~29
35/4-32
38/4-33
39/4-28
4O/ b3k

TABLE L~k

PHOTOPYROMETER PHOTOGRAPHIC DATA

Test Type

Medium Temperature Air
At Exit

Medium Temperature Air
High Temperature Air
High Velocity Air
Low Velocity Air
Low Temperature Air
1/2" Screen
1/8" Screen
High Temperature Air

1/2" Dam

* Schematic

##t Measurement at window

Deg,

633
16

103
123
17
20
18
19
15
16

18

1

2
3

251

Defined Lines¥
1 Deg, 2 Deg, 3

I3 _—
14 ——

2 7

5 70
16 —
16 -
15 --
17 -
14 —
15 -

16 --

Edge of Mixing layer
Inner Boundary of Reaction Zone

Supersonic Plume Expansion Fan




in the test section due to additional expansion of the flow on exiting the
mixing chamber. Therefore, for consistency, data comparisons must be grouped

with respect to their general location.

The ultraviolet measurements relating to the effect of velocity upon the mixing
processes, Figs., 4-30 and 4-31, agrees well with that described for the schlieren
data. Lowering the air velocity increases the rate of mixing. However, no
definitive statement can be made about tests with screens and dams, Figs. 4-32

to 4-34, Since the data being compared is aft of the exit of the mixing region

it is highly probable that any affect due to these devices has been damped out,

In contrast to the infrared data, a correlation was obtained for a correspond-
ence between lines 1 and 2. The difference between these two angles was
constant and approximately equal to 2 degrees. Since no evidence has been
gathered indicating any vast differences in mixing rates by the diagnostic
experiments conducted one would expect that the reaction zone would have a
reproducible thickness as evidenced from this data. The correlation was prob-
ably improved because of the considerably narrower wave length band utilized

in the UV photographs.

The angles measured for line 3 are approximately equal to 71 degrees for all
photographic data and invarient as a function of any of the diagnostic param-
eters. The postulation that it represents the nozzle lip expansion fan appears

valid,
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The edge of the mixing zone was compared to a calculation performed by a NASA
computer model at conditions similar to those tested in this program, Fig, 4-35,

The UV, IR, and schlieren data appears to represent the 1000°K line.

An attempt was made to reduce the photopyrometer fudicial photographs to
equivalent brightness temperature maps; however, flaws on the films undetectable
to the human eye precluded this, However, relative concentrations could be
determined from the photopyrograms. These are presented in Figs. 4-36 to 4-38,
The relative correlations are denoted 1 to 3; the lowest to the highest concen-
trations at a constant step size., See Figs. 4-25 to L-27, respectively, for

spatial orientation.

Examination of these figures reveals that the reaction zone is not continuous,
i.e., the reactions take place in discrete pockets. In general, a maximum
concentration zone exists in the air and combustion product streams. The region

between these two zones exhibits intermediate concentration levels,
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APPENDIX 5

VELOCTITY PROFILES

A determination of the two-dimensional properties of the film coolant and
air streams without combustor flow was made. The pressure profiles were
measured at the entrance to the mixing chamber with pitot probe rakes

(0.060 diameter) used in conjunction with a mercury-filled manometer bank.

The velocity profile data for the air and film coolant streams are pre-
sented in Figs. 5-1 and 5-2. The air stream is reasonably two-dimensional
except near the bottom wall where a separate flow region exists. The
gseparated flow region is a conseqguence of the sharp turning angle upstream
of the entrance to the mixing chamber. Since this region is relatively
far from the theoretically calculated mixing region, it can be assumed to

have a negligible influence on the mixing layer of interest.

The film coolants are reasonably two-dimensional at the interfaces of the
primery streams, i.,e., air and combustor exhaust products. A separated
flow region is evident near the side wall for reasons similar to those
given avove. This, also, can be assumed to have a minimal influence on
the mixing region. The tabs depicted on the figures were used to retain

the quartz windovs.
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Figure 5-1, Air Stream Velocity Profiles
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APPENDIX 6

TEST FIRING DATA
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Genersl Conditions

TABLE 6-1

TEST FIRING DATA

Run PAm TATM Relative 1Dc" ﬁc@ 8 C* - Duration,
No. Date psig ©OF Humidity psig THEO = 29.35 MR ft/sec. ¢ Sec.,
1 11/19/69 1402 57 14 398 29.39 5.41 7263 93.2 1.920
2 /¢9/ ? $ ! ! 409 30.17 5.46 7332 9k.2 8.0k5
L 11/26/69 13.92 65 19 396 2945 5.8 7375  95.3 14,950
021 1/13/70 : L7 98 402 29.88 S.Ak 7327 9k.l 14,930
okl : i : 402 i 5.50 7398 95,3 8.120
5 * Yoo | 399 29.66 5.4 7527 95.8  7.910
10 5/26/70 13.90 5k 100 401 29,85 5,39 7301 93.6 9,950
11 | é g 397 29.56 5,50 7210 92.8 10,010
12 ¢ Y ¥ 396 29.49 5.41 7229 92.8  9.970
13 5/28/70 13.8L 56 98 399 29.89 536 7400 9.8 J
14 ¥ ¥ \| ¥ 301 29.31 5,08 T708 97.7 g
16 6/9/70 13.90 67 92 39 29.63 56 . .
17 /i/ f $ 420 31.22 5.79 T246  9k.3 8.410
18 ¥ % 376 28.05 L2 7619 95.5 9,980
19 6/10/70 13.82 66 72 402 30,09 5.41 7390 94.8 9.970
20 { 387 29.00 5.6 7516 95.6 9.990
21 \ 4 4 ! } 5.25 408 9.5 9.970
22  6/a24/70 13.9L 80 45 365 27.24 5.,0L 7119 90.l 9.910
23 ; ; ! ! 388 28.89 5.19 439 9.7 9,915
2k | : i ‘ } ! 5.07 T532 95.5 9.925
25 v : i 376 28.03 5.08 7270 92.2 9.935
26  6/25/70 : 5 34 386 28.75 4,82 7621 95.8  9.915
27 ; , ; ; 380 28.32 4,89 7619 96.0 9.920
26 S | 378 28,17 499 T508 k.9  9.8%0
29 ; L | 387 28.82 508 7566 95.9 !
30 % » Y $ ¢ : 5.08 71526 95.4 9.895
31 \ 391 29.11 5.09 7554 95.8  9.905
32 6/26/70 13.82 88 32 383 28,71 5.30 7673 98.1  9.915
53 | ? ! 379 2842 5.0k 7573 95.9 9.935
ETO ' ¥ 382 28 6} 5.08 545 95.7  G.955
35 T/1/70 13.85 &0 b2 384 28.73 5.10 77k 949 9,925
36 ; i i i 392 29.30 5.09 7596 96k 9.940
37 | ] 386 28.87 5.0 7501  95.2  9.935
38 } ‘ | 391 29.23 5.21 7585 96,6 9.915
9 ! & é 388 29,01 5,05 T732 98.0  9.910
Lo ? 382 28.58 L.97 7570 95.6 9.920
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Water Coolant

TABLE 6-1 {Con't)

TEST FIRING DATA

Tank 1 Tank 2
Tenk 1  Tenk 1 Injection AT AT AT Tank 2 Tank 2 Injection AT
Run Flow, Pressure, Pressure, 11’ "712’ "713’ Flow, Pressure, Pressure, 107
No. 1b/sec. psig psig OF OF OF 1b/sec. psig psig oF
1 31.61 1030 818 31 18 67 28465 1043 815 28
2 30,71 1005 802 3 20 136  28.54 1047 809 27
k 28,56 ok 760 33 18 143  29.,k2 980 172 26
021 29.92 980 834 3k 25 141 29.75 1028 754 31
Okl 29.69 97k 826 33 21 133 29.53 1008 781 32
5  30.1k 1007 848 32 i 134 30.42 1056 821 30
10 29,81 996 822 31 22 131 30.k2 1016 800 33
11 ’ 980 820 36 26 137  30,h2 1020 799 36
12 28,00 864 40 31 20 133  30.86 1042 820 35
13 ! 87k T34 25 17 132 31.08 1060 828 29
14 28,11 846 738 27 19 127 30.86 1042 806 33
15 Misfire PR e e J . p-
16 29.81 96 838 27 20 116 31.19 1120 820 23
17 29.13 90k 806 28 19 130 29.64 1078 48 25
18 28.00 926 750 24 18 122 28.65 a6 700 26
19 29.02 986 798 33 27 138  29.75 1022 T40 32
20 29.92 1052 8hk ! 25 123  3%0.75 1090 786 30
21 30,26 1060 848 28 24 126  30.53 1096 $ 27
22 29.58 1056 846 27 22 119 30,08 1056 810 2k
23 29,13 1022 840 ! 17 16 { 1030 804 27
2k 29,02 998 806 29 23 121 29.64 1012 780 31
25 29.69 104k 842 25 20 120 30.u42 1062 820 2k
26 29,81 1052 8l 23 18 119 30.86 1066 832 24
27 30.26 1058 852 29 22 11k { 1086 838 26
28 30.7L 1086 8ok 26 ' 115  3L.30 1120 854 26
29 29.92 1082 840 21 17 120 30,53 1068 812 22
30 30,03 1086 842 ' 16 116 30,75 1060 ! 25
31 [} 1092 { 25 19 122 ! 1062 816 23
32 30.48 112k 860 i 23 120 30,86 1078 842 26
33 30,37 1122 { 21 16 111 31,08 1076 8l 25
34 30,26 1098 850 19 15 116 30,86 1060 838 22
35 30.48 1078 858 20 16 ! 31.19 1084 860 23
36 30,37 1062 ¢ 29 22 115 30,97 1050 854 30
37 30,48 1064 854 21 15 116 } 1098 840 23
38 ! 1060 858 25 22 122 31,08 1096 838 25
39 30.14 1046 83k 27 i 120 30.6h4 1044 848 29
4O 29.8L 100k 816 20 14+ 107 30,30 1042 8u2 25
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TABLE 6-1 (Con't)

TEST FIRING DATA
Water Coolant

Tank 1 Tank 2
Tenk 1 Tank 1 Injection AT AT AT Tank 2 Tank 2 Injection AT
Run Flow, Pressure, Pressure, 11’ "°12° "71%’ Flow, Pressure, Pressure, 10’
No. 1lb/sec. psig psig OF OF OF 1b/sec. psig psig OF
1 31.61 1030 818 31 18 67 28.65 1043 815 28
2 30.71 1005 802 3 20 136 28.54 1047 809 27
L 28.56 ohly 760 33 18 143 29,42 980 172 26
021 29.92 980 834 3h 25 141 29.75 1028 754 31
Okl 29.69 974 826 33 21 133 29.53 1008 781 32
5 30,14 1007 848 32 ! 134 3042 1056 821 30
10 29.81 996 822 31 22 131  30.42 1016 800 33
11 i 980 820 36 26 137 3042 1020 799 36
12 28.00 864 740 31 20 133 30.86 1042 820 35
13 ! 874 T34 25 17 132 31.08 1060 828 29
14 28.11 846 738 27 19 127 30.86 1042 806 33
15 Misfire e e >
16 29.81 gh6 838 27 20 116 31.19 1120 820 23
17 29.13 90k 806 28 19 130 29.64 1078 748 25
18 28.00 926 750 2k 18 122 28.65 o6 700 26
19 29.02 986 798 33 27 138 29.75 1022 740 32
20 29.92 1052 84k ! 25 123  30.75 1090 786 30
21 30.26 1060 848 28 2k 126 30,53 1096 $ 27
22 29.58 1056 846 27 22 119 30,08 1056 810 24
23 29.13 1022 840 ! 17 116 ! 1030 8ol 27
24k 29,02 998 806 29 23 121 29.6h4 1012 780 31
25 29.69 1044 842 25 20 120 30,42 1062 820 2k
26 29.81 1052 8k 23 18 119 30.86 1066 832 2k
27 30.26 1058 852 29 22 114 { 1086 838 26
28 30.71 1086 8ok 26 ¢ 115 31,30 1120 85k 26
29 29.92 1082 840 21 17 120 30,53 1068 812 22
30 30,03 1086 8uz | 16 116 30,75 1060 ! 25
31 { 1092 ! 25 19 122 ) 1062 816 23
32 30,48 1124 860 i 23 120 30.86 1078 842 26
33 30637 1122 | 21 16 111 31,08 1076 8l 25
34 30.26 1098 850 19 15 116 30.86 1060 838 22
35 30,48 1078 858 20 16 { 31,19 1084 860 23
36 30,37 1062 ! 29 22 115 30.97 1050 854 30
37 30,48 1064 8sh 21 15 116 ! 1098 840 23
38 ! 1060 858 25 22 122 31,08 1096 838 25
39 30,14 1046 834 27 { 120  30.64 104k 8u8 29
40 29.81L 1004 816 20 14 107 30,30 1042 842 25
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TABLE 6-1 {(Con't)
TEST FIRING DATA

Low Pressure GNZ Film Coolant

Duct Inlet Duct Inlet Inlet Inlet
Pressure Pressure Temp. Temp » Density 3 Velocity Mach

gzx.l i%?:ec . TFsdyPsig P P58 Tsd. °F Tne? °F % me’ 1b/f% Vine? ft/sec. No.
1 0.8 1.10 0.050 21 11 0.0779 369 .4 0.341
2 0.97 145 0,060 27 1k 0.0775 421.8 0.388
L 0.96 147 ! 33 20 0.0761 428.6 0.392
021 1.02 1.59 0.070 14 0 0.0793 453 .6 0.407
okl 0.99 1.46 0.060 5 -7 0.0807 41k .9 0.391
5 0.96 1.38 ! 10 -2 0.0797 406 .5 0.381
10 1.09 1.80 0.080 13 ! ! 460 .5 O.431
11 1.10 1.84 i 10 -6 0,0803 463.6 C.b36
12  1.05 1.65 0.070 9 -5 0.0802 L40.9 O.h1h
13 1.10 1.83 0.080 7 -9 0.0803 462 .3 0.436
b 1.1l 1.89 ! 13 -3 0.0794 472.1 0.443
15 Misfire e
16 1.13 202 0,090 30 12 0.0773 4935 0,455
17  1l.22 2434 0,110 24 b 0.0788 523.2 0.487
18  1.19 2.19 0.100 17 2 0.0797 504 .6 O.472
19 1l.22 2..37 0,110 28 7 0.0778 529.6 0.491
20  1.01 1.62 0.070 26 12 0.0769 446 .2 0,412
21 1.2 2.02 0.090 35 17 0.0761 497.3 0.456
22 1.7 2425 0.105 47 27 0.,0751 526.2 0.478
23 1l.17 2.28 0.107 55 3h 0.0740 5334 O.481
2k 1.15 2.19 0.101 54 { ' 523.6 O.472
25 1.10 2.01 0.09]1 51 33 0.0742 502.7 0.454
26 1.12 2,07 0.095 46 27 0.0750 5067 0 .460
27 l.lh 2.22 0.103 62 41 0.0729 530,.8 0475
28 0.92 1.43 0.062 i 48 0.0717 435 .6 0.387
29 1.06 1.89 0.085 63 45 0.0723 Lol 8 O.hk)
30 1,01 1.71 - 0,076 59 43 0.0726 k1.2 O.k21
31 1.09 1.95 0.088 52 3L 0.0739 496 M4 0.448
32 1.04 1.83 0.082 59 42 0.0723 487 .2 0.436
33 0,93 1.47 0,06k 6k 50 0.0711 4433 0.393
34 1.04 1.84 0,082 59 42 0.0723 488 .4 0.U473
35 0,90 1.65 0.2k b1 29 0.0761 Lol 4 0.36L
1.03 1.7h 0,077 50 3 0.0736 L71.7 0.425
37 1.03 ! { 51 55 0.0735 L72,1 !
38 1,03 1.99 0.313 58 L2 0.0737 473.6 O.k2k
39 1,05 1.88 0.084 62 Lh 0,0721 Lol 1 OJRINS §
L0 1,02 2.18 0.579 57 42 0.0751 459, 0411
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High Pressure GN2 Film Coolent

TABLE 6-1 (Con't)

TEST FIRING DATA

Duct Inlet Duct Inlet Inlet Inlet
Run Flow Pressure Pressure Temp, Temp. Density Velocity
No. lb/sec. Pgq,psig P_,psig Tsqs OF Tmc,oF 9mc,lb/ft Vmc,ft/sec.
1 L4.h3 14,0 0.95 9 -68 0.0997 988 .0
2  Lh.55 1.9 1.46 4 -64 0.1020 993.2
i ! 15.2 1.66 21 -58 0.1012 1000.5
021 L4.58 15.0 1.54 6 =70 0.1036 984 .8
Okl Lk,.56 14 .6 1.32 -3 -78 0.1041 9753
5 4,58 1% .9 1.48 3 =73 0.1039 981.6
10 L4.53 14 .6 1.33 : 0.1027
1 1 1.33 { | .
12 4,63 15.1 1.60 -1 -76 0.1054 OTT 4
13 4,55 .7 1.43 0 { 0.1034 978 .5
14 4,57 15.0 1.59 5 =71 i 983,8
15 Misfire T T e
16 4,40 14 .3 1.17 21 -58 0.0978 1000 .5
17 L4.62 15,5 1.81 14 -6k 0.1035 993 .2
18 4,58 15,1 1.60 10 -67 0.1030 989.0
19 L4.63 15.8 2.01 19 -60 0.1032 998.5
20 L.u45 14 .6 1.37 17 -61 0.0994 996 4
21 4.36 14 .3 1.21 27 =53 0.0964 1006 .8
22 L4.39 14,7 1.38 36 =45 0.0963 1016.0
23 kL.l 14,9 1.47 39 -43 0.,0962 1019.1
24 4,48 15.5 1.79 42 -40 0.0976 1022.1
25 k42 14.9 1.51 39 -43 0.0965 1019.1
26 4,37 14.5 1.29 35 -46 0.0959 1015 .0
27 4.30 1k b 1.2kh 49 -35 0.0929 1029.2
28 k4,39 15,0 1.53 47 -36 0.0951 1027.2
29 L4.46 15.6 1.85 52 -32 0.0961 1032.3
30 L4.40 15.0 1.53 Ly -39 0.0957 1024 .2
31 4,39 14 .8 142 41 -kl 0.0956 1021.1
32 4,34 ! 1.46 48 =35 0.0940 1028.2
33 4,27 4.4 1.28 53 -31 0.0919 1033.3
34 4,35 4.8 1.49 L7 -36 0.0943 1027.2
35 L.A43 { 1.46 30 -50 0.0976 1009,.9
36 L4.42 15.1 1.63 42 -40 0.0963 1022 .1
37 Lob43 ! 1.6L 39 =43 0.,0967 1019.1
38 L.35 14 .8 1.46 48 -35 0.0941 1028.2
39 4,38 15,2 1.66 5% -31 0,094 1033 ,3
Lo 149 1.51 45 =38 0,0950 1025.2
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LOX Oxidizer

TABLE 6-1 (Con't)

TEST FIRING DATA

Tank Injection Injection  Injector

Run  Flow, Pressure, Pressure, Temp., Tenmp.a,

No. 1b/sec. psig psig OF OF AP
1 6.22 T64 129 -262 -266 33]
2 634 728 740 -289 -1h45 !
L 6.13 750 723 ! =155 327

021 6.23 Thl 710 -301 =127 308

okl 6.18 Th6 ¢ [ % i
5 6.17 738 701 ¥ 302
10  6.23 750 709 -294 =100 308
11 6.27 40 702 -295 -162 305
12 6.22 42 709 -207 -164 313
13  6.11 122 67k -305 -189 275
4 5,70 126 664 -283 -181 273
15 Misfire - e
16 5.92 750 701 -282 -148 303
17 6.64 866 822 -287 =175 402
18  5.49 720 651 -283 -151 275
19 6,17 780 42 -290 -169 340
20  5.81 728 711 -27h =167 324
21 5.91 122 ! -276 =176 !
22 5.77 674 663 -289 -183 298
23 5,89 728 716 -288 =173 328
2k 5.79 726 703 -289 =180 315
25  5.83 728 701 -287 -186 325
26 5.65 720 679 -276 -17h 293
27 5.58 T2k 680 -285 =171 300
28 5.65 726 679 -281 -183 301
29  5.75 738 688 =276 -184 !
30  5.79 122 677 -292 -199 290
31 5,82 738 691 -287 =205 300
%32 5,66 706 669 ! -188 286
33 5,63 700 652 -281 -194 273
34 5.70 712 653 -291 =173 271
35  5.79 702 693 { =195 309
36 5.81 T 703 =280 =198 311
31 5.79 718 693 -284 -185 307
38 5.82 710 699 -286 { 308
39 5.6k 700 682 -285 -204 29k
Lo  5.66 712 689 -288 =176 307
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TABLE 6-1 (Con't)

TEST FIRING DATA

GH, Fuel
Venturi
Inlet Injection Inlet

Run  Flow, Pressure, Pressure, Temp .,

No. 1b/sec. psig psig AP
1 1.15 1923 785 58 387
2 1.6 1968 805 T2 396
L 1.10 1852 757 69 361

021 1l.15 1925 780 63 378

Okl 1.12 1920 770 82 368
5 1.16 1935 171 60 372
10 { 1942 760 63 359
11 1.1k 1920 752 67 355
12 1.15 1932 T61 64 365
13 1.1k 1915 760 { 361
W 1.12 1890 758 66 367
15 Misfire NS N
16 1.16 1975 T 15 39
17 1.15 1948 806 76 386
18  1.16 1970 787 73 k11
19 1.4 1941 792 17 390
20 1.3 1920 776 389
21 i 1925 178 83 391
22  l.15 1989 788 gk 423
23 1l.13 1977 796 105 408
2k 1.1k 1992 805 105 417
25 1,15 1983 803 9% 427
26 1.7 2019 802 0 416
27 1.k 1983 810 102 430
28 1.3 1977 ! 106 432
29 ! 1980 808 107 k21
30 l.lk4 1974 81k 98 427
31 ! 1971 818 9L )
32 1,07 1862 796 106 413
33 1,12 1959 801 113 L22
34 ! ! 799 107 L17
35 1l.l3 1940 805 83 L2l
36 l.lk 1965 816 91 L2k
37 d ! ! 95 430
38  1.12 1950 814 106 L23
39 ¢ 1945 815 104 L27
4O 1.1k 8z2 98 Lho

1975
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APPENDIX 7

DATA REDUCTION COMPUTER PROGRAMS

A hot fire data reduction computer program was written to minimize the time
required to reduce the facility operation parameters. Equations and calcula-
tions required to reduce the raw data into a workable form were assembled and a
computational sequence was formulated. The program performs all the necessary
calculations to establish the operating conditions of the various utilities and
the initial conditions of the combustion gas, air stream, and film ccolants as
they enter the mixing chamber. It was written in FORTRAN language and was used
in conjunction with a General Electric 440 Timesharing Computer. In addition,

a supplementary FORTRAN computer program entitled "Manometer Bank Pressure’ was
written to shorten the time required for data reduction of the test section static

pressure data.

The program, entitled SSMIX, consisted of a main program which handled the majority
of the data reduction, two "function' subroutines which convert millivolt values to
temperatures in degrees fahrenheit for ghromel-alumel and iron-constantan thermo-
couples, and a subroutine which calculated Mach number by an iterative procedure

given values of A/A¥ (Ref. 8).
Given below are program summaries, a definition of program variables (Table 7—1),

program listings (Teble 7-2), a data input list, and a printout for a typical run

(Table 7-3).
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GENERAL

IRUN

IDATE

PA

TATM

RH

TABLE 7-1

SSMIX PROGRAM VARIABLES

Run Number

Run Date

Atmospheric Pressure

Atmospheric Temperature

Relative Humidity

TANK-1 HIGH PRESSURE WATER SYSTEM

CWH
DTWP1l
DTWP12
DTWP13
PWHI
PWHT
TWHT
TWP11
TWP12

TWP13

VWPL1

VWP1.2

Flowvmeter Cycles

Line

Line

Line

11, 3/b4-Inch Outlet Delta Temp
12, 1-1/2-Inch Outlet Delta Temp

13, 1/4-Inch Outlet Delta Temp

Inlet Pressure

Tank

Tank

Line

Line

Line

Tank

Line

Line

Pressure

Temperature

11, 3/b4-Inch Outlet Temperature

12, 1-1/2-Inch Outlet Temperature
13, 1/4=-Inch Outlet Temperature
Temperature (IC)

11, 3/4=Inch Outlet Temperature (IC)

12, 1-1/2-Inch Outlet Temperature (IC)

2176

(Integer)
(Integer)
(psia)
(F)

(Percent)

(Cycles)
(F)
(F)
(F)
(psig)
(psig)
(F)
(F)
(F)
(F)
(Mv)
(M)

(Mv)



VWP13

TANK 2 =

CWL
DTWP10
PWLI
PWLT
TWP10
TWLT
VWLT

VWP10

8

TABLE 7-1 (Cont'd)
Line 13, 1/b4-Inch Outlet Temperature (IC)

Flowrate

LOW PRESSURE WATER SYSTEM

AIR STREAM

AMC

AMCAS

ASDAS

AVSD

MMC

MSD

PMC

PMCG

]

Flowmeter Cycles

Line 10, 1l-Inch Outlet Delta Temperature
Inlet Pressure

Tank Pressure

ILine 10, l-Inch Outlet Temperature

Tank Temperature

Tank Temperature (IC)

Line 10, l-Inch Outlet Temperature (IC)

Flowrate

Mixing Chamber Inlet Air Acoustic Velocity

Dimensionless Area Ratio Equation in Terms
of Mach Number in Mixing Chamber

Dimensionless Area Ratio Eguation in Terms
of Mach Number in the Duct

Acoustic Velocity in Duct

Mixing Chamber Inlet Air Mach Number
Mach Number in Duct

Mixing Chamber Inlet Air Pressure

Mixing Chamber Inlet Air Pressure
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(Mv)

(1bs/sec)

(Cycles)
(F)
(psig)
(psig)
(F)

(F)

(mMv)
(Mv)

(1vs/sec)

(ft/sec)

(ft/sec)

(psia)

(psig)




PMCPO

PRA

PSD

PSDA

PSDPO

RMC

RSD

T™C

TMCF

TMCTO

TSD

TSDA

TSDTO

VMC

VB

WA

YA

TABLE 7-1 (Cont'd)
Isentropic Pressure Ratio Equation in
Mixing Chamber
Pressure Ratio PA/PSD
Stream Pressure in Duct
Stream Pressure in Duct
Isentropic Pressure Ratio Equation in Duct
Mixing Chamber Inlet Air Density
Stream Density in Duct
Mixing Chamber Inlet Air Temperature
Mixing Chember Inlet Air Temperature

Isentropic Temperature Ratio Equation in
Mixing Chamber

Stream Tempersture in Duct

Stream Temperature in Duct

Isentropic Temperature Ratio Equation in Duct
Mixing Chamber Inlet Air Velocity

Stream Temperature in Duct (CA)

Flowrate

Expansion Factor

LOW PRESSURE NITROGEN SYSTEM

AMCANL

AMCNL

ANLSDV

Isentropic Pressure Ratio Equation in
Mixing Chember

Mixing Chamber Inlet GN, Acoustic Velocity

Duct GNE Acoustic Velocity
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(psig)

(psia)

(lbs/ft3)
(1bs/ft3)
(R)
(F)

(F)
(R)

(£t/sec)
(Mv)

(1bs/sec)

(ft/sec)

(ft/sec)



ASDANL

MNLMC

MNLSD

PMCNL

PMCNLG

PMCPNL

PNL

PNLSDA

PRNL

PSDPNL

RNLMC

RNLSD

TMCNL

TMCNLF

TMCTNL

TNL

TNLSDA

TSDINL

VMCNL

YNL

TABLE 7-1 (Cont'd)

Isentropic Pressure Ratio BEguation in Duct
Mixing Chamber Inlet GN, Mach Number

Duct GN2 Mach Number

Mixing Chamber Inlet GN2 Pressure

Mixing Chamber Inlet GN2 Presgsure

Isentropic Pressure Ratio Equation in
Mixing Chamber

Manifold Pressure

Manifold Pressure

Pressure Ratio PA/(PNL + PS)

Isentropic Pressure Ratio Equation in Duct
Mixing Chamber Inlet GN, Density

Duct GN2 Density

Mixing Chamber Inlet Temperature

Mixing Chamber Inlet Temperature

Isentropic Temperature Ratio Equation
in Mixing Chamber

Manifold Temperature

Manifold Tempersature

Isentropic Temperature Ratio Equation in Duct
Mixing Chamber Inlet GN, Velocity

Manifold Temperature (IC)

Flovwrate

Expansion Factor
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(psia)

(psig)

(psig)

(1bs/£t3)
(1bs/£t3)
(R)
(F)

(F)
(R)

(f£t/sec)
(Mv)

(1bs/sec)




TABLE 7-1 (Cont'd)

HIGH PRESSURE GN., FILM COOLANT

MNH

PNH

PNHA

PNHMC

PNHMCG

PMCPNH

PPONH

RNHMC

TNH

TNHA

TNHMC

TNHMCF

TTONH

VNH

VNHMC

Mach Number in Duct

Manifold Pressure

Manifold Pressure

Mixing Chamber Inlet GN, Pressure

Mixing Chamber Inlet GN, Pressure

Isentropic Pressure Ratio in Mixing Chamber

Isentropic Pressure Ratio in Duct
Mixing Chamber Inlet GN, Density
Manifold Temperature

Manifold Temperature

Mixing Chamber Inlet GN, Temperature
Mixing Chamber Inlet GN, Temperature
Isentropic Temperature Ratio in Duct
Manifold Temperature (IC)

Mixing Chamber Inlet GN, Velocity

Flowrate

LOX OXIDIZER CALCULATIONS

COX

DPOXT

PC

POXI

§

Adiabatic Compressibility
Flowmeter Cycles

Injector Delta Pressure
Chamber Pressure

Inlet Pressure
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(psig)
(psia)
(psia)

(psig)

(1bs/£t3)
(F)
(R)
(R)
(F)

(Mv)
(ft/sec)

(1bs/sec)

(Cycles)
(psi)
(psig)

(psig)




POXT

PV

ROX

RS

TXK

TOXC

TOXI

VOXC

VOXI

WOX

HYDROGEN

DPHI

PHI

PHIC

PHVI

THI

VHI

WH

XKH

ZH

FUEL

TABLE 7-1 (Cont'd)

Tank Pressure
Vapor Pressure

LOX Density
Saturation Density

Inlet Temperature

Injector Cooldown Temperature

Inlet Temperature

Injector Cooldown Temperature (IC)

Inlet Temperature (IC)

10X Flowrate

CALCULATIONS

Injection Delta Pressure
Inlet Pressure

Inlet Pressure

Venturi Inlet Pressure
Inlet Temperature

Inlet Temperature (IC)
Flowrate

Isentropic Flow Coefficient

Compressibility Factor
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(psig)
(psia)
(lbs/ft3)
(1bs/£t3)
(K)

(F)

(F)

(Mv)

(Mv)

(1bs/sec)

(psi)
(psig)
(psia)
(psig)
(F)
(Mv)

(1bs/sec)




PERFORMANCE PARAMETERS

CN
CSTAR
PRPC
TCSTAR
TCL
TC5

TC6

C* Efficiency

Cc*

Pressure Ratio PC/PA

Theoretical C¥ @ MR

Theoretical C* @ MR =

Theoretical C¥ @ MR

Theoretical C* @ MR

Total Flow

1

Il

Mixture Ratio

AIR HEATER TEMPERATURES

TAH1
TAH2
TAH3
TAHY
TAHS
VAHL
VAH2
VAH3
VAHY

VAHS

Heater Bed Temperature

Heater

Heater

Heater

Heater

Heater

Heater

Heater

Heater

Heater

Bed

Bed

Bed

Bed

Bed

Bed

Bed

Bed

Bed

Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

Temperature

Temperature !

Tempersature

TABLE 7-1 (Cont'd)

of Test

4,0
5.0

6.0

I.._l
~~
Q
=
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(Percent)

(£t/sec)

(£t/sec)
(ft/sec)
(ft/sec)
(ft/sec)

(1bs/sec)

(F)



TABLE 7-2
SSMIX - LOGIC

5C B « FPROERAM SSMIX 179769 J Te SABOL & & & «
10C

15 REAL MSDsMMNCsMNL SDs MNLMCs MNH

20 CALL OPENF (1,"XDATA",2)

295 READ(IS)YIRUNSIDATE s PAs TATMs KH

300 kkk&¥TANK 1 = HIGH PRESSURE WATER SYSTEM®&&&#
35 KEADC15) CWHs PUHTs PWHI» VWHT» VWP 115 VP12, VWP13

40 WhH=e1129%ChH

45 TWHT=IC3N (VUHT)

SO TWP11SICIN(VLEFL1)

55 TWP12=1CIN (VEP12)

60 TWP13=1CZN(VHLP13)

65 DTWPI1=1viPt1=TWHT

70 DTWP12=TvP12=-TWHT

75 DTWP13=7WP13=-TVWHT

&0C KkkEETANK 2 = LOW PRESSURE WATER SYSTEM#kkkk
&5 REAGC(1s) Chl>FWLTs PYLIs» VWLT» VWP10

90 WiL=s1102%CkL

95 TRLT=IC3N (VeLT)

100 TwP10=1C5N (VRP10)

105 LIRP10=THPIG=TWLT

110C *kkkkAIR SYSTEM &k k¥«

115 READUC1,)PSLsVSD

120 TSD=CRAL (VSL)

125 TSLA=TSD +460

130 PSUA=SPSU FPA

135 KSD=2+7TkPSDA/TSDA

140 PRB=PA/Z(PSDPA)

145 YA=SORT( (Clo=eTB32¢kde )/ (1omoT32%kde kPRAKK] e 4285T) )k (((3:5%
15C&PEA Kk1o 4285T) %(1e=PRA¥*285714))/ (1 e=PRA)))

155 LA=16+27¢YA £SQRTIPSD¥*RSD)

160 AVSD=49.  SOKT (TSDA)

165 MSD=3e75 A/ (RSD¥AVSD)

170 ASUASE (1 e/ MSD) K (2e/204) k(1o Fe2¥kMSDKK2 o) ) k&3 )
175 ANMCAS=+536 kKASDAS

180 CALL MACH (AFCASsMMC)

185 TSDTO=1e/ (1o b2 kMSDkk20)

190 TMCTO=16/ (1o be2kMMC k%20 )

195 TMC=CTMCT2/ TSDT2 ) €TSDA

200 THCF=TMC=460.

205 AMC=49. kSCRT (TMC)

210 VMC=MMC #AiC

215 PSPPI el e/ ( (1o te2kMSDE¥20)¥£365)

200 PUCPO=1e/((loFe2 kMMC k20 )6€365)

225 PMI=(PMCP3/PSDP2 ) %P SDA

230 PrC@sPMC=PA

235 KiC=2e 7EPMC/ TMC
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TABLE 7-2 (Continued)

2400 ke kLUl PRESSURE NITRYUGEN SYSTEMek&#E
245 READC(12)PNLse UNL

250 TNL=ICoN (UNL)

255 TNLSDA=TNL F460.

260 PNLSDA=PNL +PA

265 PRNL=PAZ (PNL FPA)

270 YNL=SORTCC(L1o=o57TT ke )/ (1o=05TTkkdo kPRKNL K1 0 4285 7)) #(C(3e5¢
STSUPRNL %1 42857) k(1oe=PRNL k& o285714))/(1e«PRNL)Y))
280 WANL=4e79YNL «SUKTI(PNL SDAKPNL/ZTNLSDA)

265 RANLSD=2e 7 kPNL SDA/TNL SDA

290 ANLSDV=49e kSGRTCTNL SUA)

295 MNLSD=11e474€WNLY (KNL SD KARNLSDV)

300 ASDANL=C1e/ MLSU) k(((2e/2e4) k(1o e 2kMNLSD*%20)) kk30)
305 AMCANL=.334%A SLANL

310 CALL MACH (AMCANL>MNLMC)

315 TSHINL=1 e/ (e o2 #MNLSDK(2 6 )

320 TMCINL=1e/ (1o Fe2 #MNLMCk¥24)

325 TMCNL=CTMCINL/ TSDTNL » «TNLSDA

330 TMCNLF=TMONL =460,

335 ANMCNL=49¢9 £ SORT (TMONL)

340 VicChL=MNLMC #AMCNL

345 PSDPNL=1/( (16 be 2¥NMNLSDkk2s)%k365)

350 PMCPNLE1e/( (1o Fe 2 kMNLMCK&2% ) %%365)

355 PMCAL=(PMCPNL/PSDPNL ) ¥PNL SDA

360 PHUNLG=PMONL=PA

365 KivLMC=2+61 ¥PMCNL/ TMCNL

370C kkktkHIGH PRESSURE GNZ2 FILM C29LANTkkkkt
375 KEADC1s)PNHs VNH

380 TNH=ICON (VNH)

385 TNHA=TNH +460.

390 PNHA=PNH FPA

395 PPINH =+ 988

400 PMCPNH=e 528

405 NMNH=» 122

410 TTUNH=e997

415 BUNH=3e38 PN HAZ(PPONH*SQRT(TNHA) )

420 TNHNC=o&3333%INWHAZ TTONH

425 TNRMHCF=TNHMC =460

430 VUNKinC=496 9« SOKT CINHMC)

435 PNHiC=(PMCPNH/PPINH) $PNHA

440 PNHMCG =PNHNC=PA

445 RNHNC=20+ 61 «PNHMC/ TNHMC

450C kkkkkLOX @XIDIZER CALCULATIONS#&kk¥%
455 READC1sIYPC>COXoPOXTsPOXIsVOXIoVIXC

460 TOXI=ICAN(VIXI)

465 TUyC=1CUN (VOXC)

470 TAK=(TOXI +4590 668)/ 18
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TABLE 7-2 (Continued)

475 Kbud2 42000761 414202= 0010330164 TK=2:23E=5k1K k&20)
460 PVEPAKLXPI S5 2362797295348 1/TK=41958931/TKk&24)
485 B25e097904831 =516 B9IBESIE=6*TKF] e 2860036E=G«TK* k2,
490 RKUX=RSK (10 ¥B¥(PIXT tPA=PVIFl o) kkol
495 VUX=e 1TOTTE=3&COXKROX
500 DPuXI=P3XI=-PC
505C FkkkkHYDRDGEN FUEL CALCULATISNSkk&&k
S10 KEADC1s)PHRVISPHISVHI
519 THI=LCON(VHI)
520 XAKH=C((THL +606) 72006 )&e00013) 01362
525 PHIC=2HI FPA
530 ZKH=4e6¢555KE =5 &PHIC .99
535 WH=CC(PAVIFPAI/ZSERTCITHL #4604+ )) «SQRT (1 e/ 2ZH) ¥XKH
5S40 DPHI=PHI=PC
545C ¥¥ kK ¥PERFIRMANCE PARAMETERS ¥k k& &
550 PRKC=01°C FPA Y/ PA
S55 Xtr=WIX/VH
560 WT=W2XFLH
565 CSTAR=130s ¢ (PCFPAI /T
570 TCL=(L((FCFPAI=3006 /20062 %156) FE1 460
579 TCS=C(C(PC FPAY=300+)7200+) %306 F71893s
560 TC6=C(((PCHPAI=300:)72006)%40+) +7600s
585 IF (XIK=50)30540550
590 30 TCSTAR=((5e =XMR) ¥(TC4=TCS5)) +TCS
595 G2 T2 55
600 40 TCSTAR=TCS
605 9 T2 5SS
610 50 TCSTAR=TCS=C(XIrR=5¢ )« (TCS-TC6))
615 55 CN=(CSTAR/TCSTAR) ¥100.
620C tkekkAlR HEATER TEMPERATURESk#kkk
25 RELDC1s )yf-'\Hl:\/(-'-\He.’Vl—'\HSJ VAHY4s VAES
630 TAR1=CKRAL (VAK1)
635 TAR2=CiAL (VAHE)
640 TAH3=CRAL (VAH3)
645 TAR4=C AL (VAH4)
650 TaHSECKAL (VAHS)

655C Fek«kPRINTOUTSkkkk¥

660 PikINT»" ¥k kK F k ENMNTT X TN G PR % GR AL & %
665&+ + ¥

670 PhINTs12," NSTEs DIMENSIONS FOR PARAMETERS ARE AS FYLLGUWS:*
675 riINTavs " TEMPERATURES « F DENSITIES = #/FT3"
680 rimINTsY PRESSURES = PSIG FLEWS = #/7SECT

685 I INTs"Y VELOCITIES = FT/ZSECT

690 PhINTs e * 0k Kk ok ok & & & ¢ % % k Kk &k £ k & k k ¥ &

6958+ x & &%
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TABLE 7-2 (Continued)
TO0 PirinTet s RUN = s IRUNS® s TDATE - “,1DATE
705 PRINT 70:sPAsTATMs RH
710 PRINTstZ2s85°% | ik TANK 1 = HIGH PRESSURE WATER SYSTENM k&&e&®
T1S PRINT 7S s WhHs PWHT s PHHIs TWHT, LOTWPLIDTHPI2,DTWPL3
720 PRINTs 25t 5"% ¥kkke TANK 2 = LIW PRESSURE WATER SYSTEM &k&&&®
725 PRINT BOs WL PWLToPWLI»TWLT,DTWP10
730 PRINTs 258 ," kkekk AIR SYSTEM &kk&&*
735 PRINT &855WAsPSDsPMCGs TSDs TMCFsRMCs VMCs AMCy» MMC
740 PRINTs t251," ¥Fkkkk LDV PRESSURE NITRDGEN SYSTEM &%k&&*
745 PRINT 9054NLs» PNLsPMCNLGs TNLs TMCWNLF » RNLMCs VMCNL > AMCNL » MNLMC
750 PRINTstZ2sts" kkktk HIGH PRESSURE NITRIGEN SYSTEM &¥kk&'
755 PRINT 100suNHs PNHaPINHMCGs TONHs TNHMCF »s RNHMC e VNHMC
760 65 PRINT>t25¢,5" kkkkk LOX OXIDIZER CALCULATIGNS &¥k&k™
765 PRINT 1055 00XsP3XToPOX1sTOX1sTIXCs DPOXI
770 PRINT»t251 5" kkk¥k HYDRIGEN FUEL CALCULATIONS #i&kk&"
775 PRINT 110sWHePHVIsPHI» THI » DPHI
T80 PRINTs12585" kk¥kk PERFORMANCE PARAMETERS &&k#&*
7685 FPRINT 1155 PCoPRPCs XMRsWTsCSTARSTCSTAKSCN
190 PRINTs t2s5¢5 " kkkkék AIR HEATER BED TEMPERATURES ¥%&k&k&*
795 PRINT 120 1TAH1o TAHZ2 s TAH3, TAH4, TAHS
800 70 FORMAT(/s"P ATV = “FS5e255Xo"T ATM = "Fd4e0s5Xs"™RH = “'Fdetls
BOSESX>"PC/rPA IDEAL = 29.35')
810 75 FORMAT(/s""FLGW = "F5¢2,5X2"P .TANK = "F6e15s5Xs"P I[N = "Féels
152572 "T TANK = "Fd4o0s/75"DT 11 = ""F4e0s5X2"DT 12 = "Fdhd.055Xs
G208 LT 13 = "'F4.0)
B82S 80 FORNAT( /5 '"FLOW = "FS5:255Xs"P TANK = "F6éel1s5Xs'P INLET = "
B30ELEF 6 15//75"T TANK = "Fde0sTXs"DT 10 = "F4.0)
835 BS FIRMATI/S"FLIV = "F4:.2,5Xs"P SD = ""F4e355X5"P MC = "FS5e3»
B40E//75"T SD = ""FS5e055Xs""T MC = "FSeQs5Xs"™RHG MC = "“FSeds//s
BA4SE"Y MC = “FHEe1sSXs"A = "F6elaBXs®™NM = "“"F4.3)
850 90 FORMATI/5VFLGOW = YF4eZ2pONs™"P N2 = "Fd4e258Xs'P MC = "F563s775
EO0EMT N2 = "F3e0s5X5™T MC = "F3e0s5Xs"RKHY MC = "FSeds//s
BEOEL'Y MC = "F6elsSXo"A = “"Fbo]1s5Xse*™M = “F4.3)
65 100 FORPAT(/s"FLIW = "F4e2505Xs"P N2 = "Fd4elsSXs"P MC = "F6e2»
BTQESHs T N2 = "F3008//5"T MC = “"FAs05s5Xs*"RHD MC = "FD5e4s5Xs
BETHE"VEL N2 = "F6e 1)
HBEO 105 FORMAT(/s"FLOW = "Fd4.255Xs"P TANK = "F5e155Xs"FP IN = *'FS5eis
E§89¢//5"T Iiv = “"F56055%Xe"T CI0L = FS5e005X5s"DP INJ = "F561)
E9G 110 FORMAT(/s"FLOW = "Fd4e255Xs™P VEN IN = “F6e1s5Xs™"™P IN = ""Fbols
E5SS5u/l/ /YT HE = "Fd:0s5Xs"DP INJ = "F5.1)
00 115 FIRMATI/Z3PC = "FSe1s5Xs"PC/PA = "FS5e255Ks" Mk = "F5e255Xs
05T LTAL FLZW = “Fde2s//75"Ck = “"FSe0sSKs"THEUR Ck = "F5.0s5X»
QI1C&"ETA Ck = 'F5.1)
915 120 FORVATI/,™T BED | = "F5¢0s3X5s"T BED 2 = “F5:003Xs
920&"T BED 3 = "FS5:053Xs™T BED 4 = "FS5e0s//5"1 BED 5 = ""F5.0)
25 PRINTs 125t ¥ ok K % % & & k ¥ Kk k kK ¥ ¥ kK Kk & % % %
ERCIOR N I I I
935 PRINTs 12522
999 LiNbL
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TABLE 7-3

PROGRAM SSMIX - TYPICAL OUTPUT

% 4 % k % % M I X I NG PR O®GRAM k¥ % % % 3k

NOTE: DIMENSIONS FOR PARAMETERS ARE AS FOLLOWS:
TEMPERATURES = F DENSITIES - #/FT3

PRESSURES = PSIG FLOWS - #/S5EC
VELBCITIES = FT/SEC

% % ok ok ok Kk k ok sk k ok %k k k sk k k k sk k k k *k k *k

RUN = 30 DATE = 62570

P ATM = 13.91 T ATM = 80, RH = 34.0 PC/PA IDEAL = 29.35

*dkdkk TANK 1 = HIGH PRESSURE WATER SYSTEM skkskok
FLOW = 30.03 P TANK = 1086.0 P IN = 842.0 T TANK = 83

DT 11 = 21 DT 12 = 16. DT 13 = 116

*kkkk TANK 2 <« LOW PRESSURE WATER SYSTEM sokkkok

FLMY - 3075 P TANK =« 1060.0 P INLET - 812.0

T TANK = 78, DT 10 = 25,

kkokckk ATR SYSTEM sksokokk

FLOW = 2,27 P SD = 666 P MC - 0.002
T SH = 786 T MC = 770. RH@® MC - .0306
V MO - 520.3 A = 1718.2 M = <303
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TABLE 7-3 (Continued)

skl LOW PRESSURE NITROGEN SYSTEM skdedecdesk

FLOW = 101 P N2 = 1.71 P MC - 0076
T N2 = 59, T MC = 43 RHG MC = 0726
V MC = 471.2 A = 1119.0 M = o421

kkkksk HIGH PRESSURE NITROGEN SYSTEM skskskkok
FLOW = 4.40 P N2 - 15.0 P MC = 153 T N2 = 44.

T MC - =39, RHG MC = 0957 VEL N2 = 1024.2

ddckkk LOX GXIDIZER CALCULATIOGNS ksksdoksk
FLOW = 5.79 P TANK = 722.0 P IN = 6770

T IN = =292, T COGL = =199 bP INJ = 290.0

dokckdok HYDROGEN FUEL CALCULATIBNS dkskokk
FLOW = 1.14 P VEN IN = 1974.0 P IN = 814.0

T H2 = 98, DP INJ = 427.0

sokkkdk PERFORMANCE PARAMETERS s#skksksk
PC = 387.0 PC/PA - 28.82 MR =« 308 TOTAL FLGBW - 6.93

Ck = 7526 THEGR C* = 7885, ETA C%k = 95.4

kkkkk ATR HEATER BED TEMPERATURES s#%¥o%
T BED 1 = 987, T BED 2 = 741, T BED 3 = 958. T BED 4 = B20s.

T BED 5 = 936
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PROGRAM SSMIX

This program reduced desired facility parameters from test firing raw data. Three
major subsystems were involved: (1) LOX-GH, rocket motor, (2) GN, film coolant,
and (3) heated air. For data reduction purposes these three subsystems are
further divided as follows:

1. LOX-GH_ Rocket Motor

a. Tank 1 - High Pressure Water System
b. Tank 2 - Low Pressure Water System
c. LOX Oxidizer Calculations
d. Hydrogen Fuel Calculations
e, Performance Parameters

26 gﬁe Film Coolant
a. High Pressure GN, Film Coolant

b. Yow Pressure Nitrogen System
3. Heated Air
a. Air Stream

b. Air Heater Temperatures

Data reduction for each of the above was handled separastely in a labeled section

of the program.

SSMIX DATA INPUT

Data were entered in permanent file XDATA. Nine lines of data were imputted as

shown below.
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1. IRUN, IDATE, PA, TATM, RH

2. CWH, PWHT, PWHI, VWHT, VWPll, VWPl2, VWPL3
3. CWL, PWLT, PWLI, VWLT, VWPLO

4, PSD, VSD

5, PNL, VNL

6. PNH, VNH

7. PC, COX, POXT, POXI, VOXI, VOXC

8. PHVI, PHI, VHI

9. VAH1, VAH2, VAH3, VAHL, VAHS

It should be noted that a line number was required and a comma was needed to

separate each data variable.

SUBROUTINES

Function Icon

This function performed temperature scaling of millivolt values from iron-

constantan thermccouples with a 150F reference junction in the range of -11.2
to +53.2 millivolts (-320 to 1800F). Scaling was accomplished by separating
the 64,4 millivolt range into smaller ranges, each being fitted with a third-

order polynomial equation. The breakdowm was as follows:

.2 MV Range -11.2 to =11.0 MV
1.0 MV Range -11.0 to -10.0 MV
2.0 MV Ranges =10.0 to 0 MV
4,0 MV Ranges 0 to +52.0 MV
1.0 MV Range +52,0 10 + 53,0 MV

.2 MV Range +53.0 to +53.2 MV
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The program (Table 7-L) selected the correct equation from the millivolt value

and solved for the temperature. Accuracy is within L 1.0 Fof NBS standards.

Function Cral

This function performed temperature scaling of millivolt values of chromel-

alumel thermocouples with a 32F reference Jjunction in the range O to 55 milli-
volts (32 to 2504F). Scaling was accomplished by treating the 55-millivolt range
as eleven 5-millivolt ranges, each being fitted with a third-order polynomial
equation. The program (Table 7-5) selects the correct equation from the millivolt

value and solves for the temperature. Accuracy is within : 1.0 Fof NBS stsndards.

Subroutine Mach

This subroutine (Table 7-6) calculates the Mach number for the film coolant and

air streams in the range between .0l and 1.00 by an iterative procedure given a
value of A/A¥%, The assumption of a perfect gas (K = 1.4) i$ utilized., It initially
assumes a Mach number of 0.5 and calculates A/A*, Then by comparison to the given

value of A/A* it adjusts the Mach number until agreement within 0.000l is achieved.

PROGRAM MANOMETER BANK PRESSURE

The program, entitled Manometer Bank Pressure, was a simple program that was
written to shorten the time required for data reduction of the test section static
pressure data. The calibration date was fed into the program together with the raw
data by & punched tape. The program then converted the measured liguid level +to

pressure via the appropriste equation depending on the particular fluild in the
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TABLE T-4
FUNCTION ICON - LOGIC

7000 FUNCTIUN ICON(XMV)

7005C

7010C IRON CINSTANTAN THERMJICOQUPLE MILLIVQLT T DEGREES F CONVERSION
7015C 150 DEGREE REFERENCE JUNCTION TEMPERATURE

7020C J T. SAB3L 12/18/68

"7025C ‘
7030 IF{XMVeGEs=11+2¢AND+XMV.LE+53.2) GO TO 5
7035 T=9999.

7040 GO "T@ 140

7045 S5 IF(XMV) 10250550
7050 ‘0 IF(XMVOLT.‘IO"AND-XMV-GT-’Ilo) G@ Tg 40

7055 IF(XMVeLEs=11+) GO TO 45
7060 N=TABSCINT(XMV/2))

7065 I=N#] '

7070 V= XMV F2 e %N

7075 Ly TI (15,20:25530535535)51
7080 15 T==o15%V*V+33:85%VHr150.
7085 G3 T2 130

7090 20 T==e5%V*kxVIE34:5%VEEL 7

7095 G T@ 130

7100 25 T==e8*¥VXkVE35:.9%VE107

7105 GO T9 130

7110 30 T==1:3%V4VI38.4%V=-64+3 -
7115 GJd T2 130

7120 35 T==2:65%ViVF43:05%V=146.3
7125 cd TG 130

7130 40 V=XMVFEIOe.

7135 T==8e%kVkV IS4 %kV=-2436 .

7140 6o TO® 130

T145 45 VU=XtiVelile

7150 T==50%V¥V +t65-%V=305>»

7155 G TJ 130

7160 50 IF{XMVeGT 525 +ANDo XMV LT. 53 ) GO T 120
7165 IF{XMV.GE=53.3 G3 TO 125 '
7170 N=INT (XMV/ 40 ). ’

7175 1=N ¢

7180 Vz XtiVed4e %N

71895 G3 TI (55:60:65:70:75:80:85:90:95:100910531lO:llbo‘15)31
7190 55 =-0875%V¥VE33:525%Veri50. .
7195 63 Tg 130

7200 60 T=-05%UY%Y¢32.6%VE282.7
1205 63 Ta 130
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TABLE 7-4 (Cont'd)

7210 65 T=.075%VkVe32:2%Vr412:3
7215 s T 130

7220 70 T=0e%V*kV+32:.5%V+542.3

7225 G2 T3 130

7230 15 T==e0125%V%V 32 725%V 6723
7235 6J 19 130 .

7240 BO T==+0375%V%kV 32, 575*VV8030
1245 Gd To 130 . )
7250 &5 T==08754V%V+31.975%V+932.7
1255 G2 T 130

7260 90 T==+1%VEVE3]l1%VHFI059.2
7265 Gy T 130

7270 95 T==e1625%VkV29.975%V+] 182
7275 G2 TO 130

7280 100 T==+1%VkVI28.T7%V+1299.3
7285 G& TO 130

7290 105 T=-«025%V*V 128+ 154V F 41245
7295 Ge To 130

7300 110 T=e375%V*V+27.65%V ] 52407
7305 G TO 130

7310 115 T=-.0375%V*V +30+575%V 1641 +3
7315 G T3 130

7320 120 V=XMV-52.

7325 T=e 4%VAV 29+ 8%V +] 763

7330 Ge T2 130

7335 125 V=XMV-53.

7340 T=20e%V¥VH26e%V+179342

7345 130 IF(T) 13551405140
7350 135 ICAN=INT(T=+5)
7355 - Gd TA 999

7360 140 ICON= INT(T*uS)
7365 999 RETURN

7370 END




TABLE T=%
FUNCTION CRAL - LOGIC

5000 FUNCTION CRAL (XMV)
§005C _ _
g010C CHROMEL-ALUMEL THERMICOUPLE MILLIVOLT TO DEGREES CONVERSION
§015C 32 DEGREE REFERENCE JUNCTION TENMPERATURE

5020C Je T« SABDL 12/27/68
K025C '

%030 IF(XMVeGE O «0+AND s XMVeLE+554s) G@ TO S
8035 T=9999.

8040 G9 TO 65

RO45 S NEINT(AMV/5e)

8050 - I=N¢tl

8055 V=XMV=5 o %N

&060 G T3 (10s15520-25,30535540045550555,60560)51
BO65 10 T==e216%VkV E44.94%V +32. '
2070 GO TO 65 E
KNDTS 15 T==eD48%VKV F45.%V 25143
£080 Go TQ 65 :

80Y5 20 T==o125%Vv*V +44.08%V 4751
%090 GO T3 65

H099 25 T=-s048%V%kV F42.T72%V1+692.3 .
%100 Gd TO 65 .

6105 30 Tz==e016%Vk\V F42.:28%V +9040 7
2110 G@ TO 65

115 35 T=e064%VEV 42 .36%VELI115:7
8120 G8 To 65

£125 40 T=s168%V*V +42.74%V 132901
8130 Gy TQ 65

BE135 45 T=.208%V%V t43.:.88%V*F1547.
8140 Gd T 65

£145 S50 Tz=el 76 %VHkVEAS68%V 17Tl 66
8150 GO T@ 65

B155 55 T=e240%V%V 47 32%V 200464
8160 GO T@ 65

8165 60 T=e240%V%V ES50.2%V 2247
8170 65 CRAL=INT(T#re3)

8175 99 RETURN

8180 END
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1000
10505C
101CC
1015C
1020C
0250
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1099

TABLE 7-6

SUBROUTINE MACH - LOGIC

SUBKRSUTINE MACH(AS XKM33

THIS PKIGRAM GIVEN AN A/Ak VALUE SOULVES FOR MACH NUMBER
USING AN ITERATIVE PRYCEEDUREe. PR2GRAM WILL SO@LVE F9YR MACH
NUPBERS BETWEEN 01 AND 1000

Afil=s01

Ah2=1.

S Xp3=(XM1rXM2)/72s
AAS{1e /XM3)#(((2:/204) ¢ (
(AL S(AA=A) Yo LTe «0Q001)
IF{AA=A) 10525515

10 Xie=Xr3

G Tz o

15 XM1=X13

G9 Y9 S

25 Re TURN

FND

e if2ed) kXM Kk k2 e ) k30 )

G TY 25

295




manometer tube., The measurement of the liquid level was derived from photographs
of the manometer bank during testing. Reduction of the film clips to physical
dimensions was accomplished through utilization of a Vanguard Motion Analyzer.
Manometer bank tubes denoted 1, 2, 3, 6, 7, 9, 13, 20 contained Hydrazine
Tetrabromide (s.g. = 2.96, 1 in = ,107 psi). Tubes 4, 5, &, 14, 17 and 18
contained FS-5 a fluorinated oil (s.g. = 1.86, 1 in = .067 psi) and the remain-
ing tubes contained water. All manometer bank fluids were dyed with methylene
blue. A program summary is given in Table 7-7 and a typical printout is shown

in Table 7-8.
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10C
15C
o0
25
30
35
4N
45
S0
55
&n
&S
70
75

TABLE 7-7

PROGRAM MANOMETER BANK PRESSURE - LOGIC

MANGMETFR BANK PRESSURE PROGRAM

NIMENSTON ZERMC31I1,RDC31)

CALL OPENFCI,"MDATA",2)
READC1:)CZERB(INISI=1531)
RFEADC15s)TIRUNS,C445CO
RFADCL1,YCRDCIISI=1,531)

PRINT,* RUN = ", TIRUN

PRINT, t25° N@G. INCHES PRESS."5 ¢
SPAN=C44=C0O

CALL=44./SPAN

DA 10 T=1,31
XIN=CC(RDCIY=-CO)*%CALY=-ZERGC(CI)

GO TOC2s2525454525P54852965656525456265454565256565696565606560

KNEEs65A)» T

25

QN

95

100
ins
110
115
117
120
125
127
130

(o]

4

6
g
10

20
30

READY

PRFSS=XTN%e107

Cr TO R
PRESS=XTN*%067

G TO K

PRESS=XTIN*%.0361

PRINT 20, I.,XIN,PRESS
COAONTINUE

PRINT 30,

G?3 TA 1
FORMATCI3:3XsF6:352XsF6+3)
FORMATC IS/ 2/ 77 P77 77777 FP PP PP 77777 7)
END
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TABLE 7-8

PROGRAM MANOMETER BANK PRESSURE -

TYPICAL OUTPUT

s - 36

NDe INCHES PRE &5
1 34392 3. 680
e 436150 4o 617
3 410132 4o 401
4 12418 Ot 32
> =1e b2 - 109
6 43+ 450 40 6 49
T 41900 4 483
& Te 608 0-510
9 324525 3e 480

10 =073 =e 003

1 1e271 0.0 46

1 0669 0.024

13 39.200 40 194

14 0925 0.062

15 1.723 0.062

16 0.288 0.010

17 =1.700 =o 114
18 =1:650 e 111

19 46 325 0s156
e0 41780 die 4770
21 20398 0.087
22 2. 716 0.098
23 3326 0-.120
24 1385 0050
«5 =699 =025
26 = Q77 =s 003
e 1386 0.050
< de 445 0-160
«9 =+ 106 = 504
S0 =e 077 =+ 003
31 5970 0:216
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